Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (7): 2315-2332.DOI: 10.6023/cjoc202311029 Previous Articles Next Articles
ARTICLES
曹茜娴, 由君*(), 刘其业, 刘波, 喻艳超, 武文菊*()
收稿日期:
2023-11-27
修回日期:
2024-02-27
发布日期:
2024-03-28
基金资助:
Xixian Cao, Jun You(), Qiye Liu, Bo Liu, Yanchao Yu, Wenju Wu()
Received:
2023-11-27
Revised:
2024-02-27
Published:
2024-03-28
Contact:
E-mail: Supported by:
Share
Xixian Cao, Jun You, Qiye Liu, Bo Liu, Yanchao Yu, Wenju Wu. (4S,4'S)-2,2'-(4,6-Dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole]-Ni(II) Complexes Catalyzed Highly Enantioselective Nitrile Imine Cycloaddition Reactions[J]. Chinese Journal of Organic Chemistry, 2024, 44(7): 2315-2332.
Entry | Ligandb | Metal salt | Solvent | Base | Yieldc/% | eed/% |
---|---|---|---|---|---|---|
1 | L1 | Ni(ClO4)2 | DCM | DIPEA | 88 | 5.0 |
2 | L2 | Ni(ClO4)2 | DCM | DIPEA | 90 | 7.0 |
3 | L3 | Ni(ClO4)2 | DCM | DIPEA | 91 | 3.0 |
4 | L4 | Ni(ClO4)2 | DCM | DIPEA | 88 | 13.1 |
5 | L5 | Ni(ClO4)2 | DCM | DIPEA | 90 | 5.1 |
6 | L6 | Ni(ClO4)2 | DCM | DIPEA | 93 | 62.0 |
7 | L7 | Ni(ClO4)2 | DCM | DIPEA | 90 | 6.0 |
8 | L8 | Ni(ClO4)2 | DCM | DIPEA | 90 | 7.1 |
9 | L6 | Mg(NTf2)2 | DCM | DIPEA | 92 | 38.3 |
10 | L6 | Cu(CH3CN)4•PF6 | DCM | DIPEA | 90 | 42.2 |
11 | L6 | Sc(OTf)3 | DCM | DIPEA | 87 | 37.0 |
12 | L6 | Zn(OTf)2 | DCM | DIPEA | 89 | 32.1 |
13 | L6 | Ni(ClO4)2 | Et2O | DIPEA | 91 | 46.2 |
14 | L6 | Ni(ClO4)2 | Toluene | DIPEA | 92 | 39.1 |
15 | L6 | Ni(ClO4)2 | DCE | DIPEA | 95 | 82.0 |
16 | L6 | Ni(ClO4)2 | THF | DIPEA | 93 | 43.3 |
17 | L6 | Ni(ClO4)2 | DCE | NMM | 40 | 46.0 |
18 | L6 | Ni(ClO4)2 | DCE | Pyridine | 10 | 0 |
19 | L6 | Ni(ClO4)2 | DCE | DBU | 0 | 0 |
Entry | Ligandb | Metal salt | Solvent | Base | Yieldc/% | eed/% |
---|---|---|---|---|---|---|
1 | L1 | Ni(ClO4)2 | DCM | DIPEA | 88 | 5.0 |
2 | L2 | Ni(ClO4)2 | DCM | DIPEA | 90 | 7.0 |
3 | L3 | Ni(ClO4)2 | DCM | DIPEA | 91 | 3.0 |
4 | L4 | Ni(ClO4)2 | DCM | DIPEA | 88 | 13.1 |
5 | L5 | Ni(ClO4)2 | DCM | DIPEA | 90 | 5.1 |
6 | L6 | Ni(ClO4)2 | DCM | DIPEA | 93 | 62.0 |
7 | L7 | Ni(ClO4)2 | DCM | DIPEA | 90 | 6.0 |
8 | L8 | Ni(ClO4)2 | DCM | DIPEA | 90 | 7.1 |
9 | L6 | Mg(NTf2)2 | DCM | DIPEA | 92 | 38.3 |
10 | L6 | Cu(CH3CN)4•PF6 | DCM | DIPEA | 90 | 42.2 |
11 | L6 | Sc(OTf)3 | DCM | DIPEA | 87 | 37.0 |
12 | L6 | Zn(OTf)2 | DCM | DIPEA | 89 | 32.1 |
13 | L6 | Ni(ClO4)2 | Et2O | DIPEA | 91 | 46.2 |
14 | L6 | Ni(ClO4)2 | Toluene | DIPEA | 92 | 39.1 |
15 | L6 | Ni(ClO4)2 | DCE | DIPEA | 95 | 82.0 |
16 | L6 | Ni(ClO4)2 | THF | DIPEA | 93 | 43.3 |
17 | L6 | Ni(ClO4)2 | DCE | NMM | 40 | 46.0 |
18 | L6 | Ni(ClO4)2 | DCE | Pyridine | 10 | 0 |
19 | L6 | Ni(ClO4)2 | DCE | DBU | 0 | 0 |
Entry | Temp./℃ | Amountb/mol% | Yield/% | ee/% |
---|---|---|---|---|
1 | 10 | 6 | 94 | 83.7 |
2 | 30 | 6 | 95 | 82.0 |
3 | 40 | 6 | 90 | 83.0 |
4 | 50 | 6 | 91 | 83.8 |
5 | 65 | 6 | 82 | 42.7 |
6 | 0 | 6 | 95 | 89.0 |
7 | –10 | 6 | 90 | 82.5 |
8 | –30 | 6 | 92 | 71.1 |
9 | –40 | 6 | 80 | 55.1 |
10 | –50 | 6 | 75 | 40.5 |
11 | –65 | 6 | 20 | 12.0 |
12 | 0 | 8 | 95 | 92.0 |
13 | 0 | 10 | 97 | 97.5 |
14 | 0 | 12 | 96 | 97.6 |
Entry | Temp./℃ | Amountb/mol% | Yield/% | ee/% |
---|---|---|---|---|
1 | 10 | 6 | 94 | 83.7 |
2 | 30 | 6 | 95 | 82.0 |
3 | 40 | 6 | 90 | 83.0 |
4 | 50 | 6 | 91 | 83.8 |
5 | 65 | 6 | 82 | 42.7 |
6 | 0 | 6 | 95 | 89.0 |
7 | –10 | 6 | 90 | 82.5 |
8 | –30 | 6 | 92 | 71.1 |
9 | –40 | 6 | 80 | 55.1 |
10 | –50 | 6 | 75 | 40.5 |
11 | –65 | 6 | 20 | 12.0 |
12 | 0 | 8 | 95 | 92.0 |
13 | 0 | 10 | 97 | 97.5 |
14 | 0 | 12 | 96 | 97.6 |
[1] |
Poulsen, P. H.; Li, Y.; Lauridsen, V. H.; Jørgensen, D. K. B.; Palazzo, T. A.; Meazza, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2018, 57, 10661.
|
[2] |
Wang, K.; Xiao, Y. Chirality 2021, 33, 424.
|
[3] |
Wang, M.; Zhang, Z.; Zhang, W. Acc. Chem. Res. 2022, 55, 2708.
|
[4] |
Hilpert, L. J.; Sieger, S. V.; Haydl, A. M.; Breit, B. Angew. Chem., Int. Ed. 2019, 131, 3416.
|
[5] |
Zengeya, T. T.; Garlick, J. M.; Kulkarni, R. A.; Miley, M.; Roberts, A. M.; Yang, Y.; Crooks, D. R.; Sourbier, C.; Linehan, W. M.; Meier, J. L. J. Am. Chem. Soc. 2016, 138, 15813.
pmid: 27960310 |
[6] |
Nunes, R. C.; Ribeiro, C. J. A.; Monteiro, Â.; Rodrigues, C. M. P.; Amaral, J. D.; Santos, M. M. M. Eur. J. Med. Chem. 2017, 139, 168.
doi: S0223-5234(17)30579-2 pmid: 28800455 |
[7] |
Ahsan, M. J.; Ali, A.; Ali, A.; Thiriveedhi, A.; Bakht, M. A.; Yusuf, M.; Salahuddin; Afzal, O.; Altamimi, A. S. A. ACS Omega 2022, 7, 38207.
|
[8] |
Fahrni, C. J.; Yang, L.; VanDerveer, D. G. J. Am. Chem. Soc. 2003, 125, 3799.
|
[9] |
Chen, J. R.; Dong, W. R.; Candy, M.; Pan, F. F.; Jörres, M.; Bolm, C. J. Am. Chem. Soc. 2012, 134, 6924.
|
[10] |
Thomson, C. J.; Barber, D. M.; Dixon, D. J. Angew. Chem., Int. Ed. 2019, 131, 2491.
|
[11] |
Yang, C. J.; Zhang, C.; Gu, Q. S.; Fang, J. H.; Su, X. L.; Ye, L.; Sun, Y.; Tian, Y.; Li, Z. L.; Liu, X. Y. Nat. Catal. 2020, 3, 539.
|
[12] |
Hu, F.; Zhang, H.; Chu, Y.; Hui, X. P. Org. Chem. Front. 2022, 9, 2734.
|
[13] |
Matiadis, D. Adv. Synth. Catal. 2023, 365, 1934.
|
[14] |
Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279.
pmid: 15355109 |
[15] |
Wang, C.; Wen, D.; Chen, H.; Deng, Y.; Liu, X.; Liu, X.; Wang, L.; Gao, F.; Guo, Y.; Sun, M.; Wang, K.; Yan, W. Org. Biomol. Chem. 2019, 17, 5514.
doi: 10.1039/c9ob00720b pmid: 31115424 |
[16] |
Hashimoto, T.; Takiguchi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 11473.
doi: 10.1021/ja405444c pmid: 23869712 |
[17] |
Zhang, D. Y.; Shao, L.; Xu, J.; Hu, X. P. ACS Catal. 2015, 5, 5026.
|
[18] |
Deepthi, A.; Acharjee, N.; Sruthi, S. L.; Meenakshy, C. B. Tetrahedron 2022, 116, 132812.
|
[19] |
Song, L.; Lai, Y.; Li, H.; Ding, J.; Yao, H.; Su, Q.; Huang, B.; Ouyang, M. A.; Tong, R. J. Org. Chem. 2022, 87, 10550.
|
[20] |
Sibi, M. P.; Stanley, L. M.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 8276.
|
[21] |
Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Org. Lett. 2013, 15, 76.
|
[22] |
Gerten, A. L.; Slade, M. C.; Pugh, K. M.; Stanley, L. M. Org. Biomol. Chem. 2013, 11, 7834.
|
[23] |
Pellissier, H. Tetrahedron 2007, 63, 3235.
|
[24] |
Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
doi: 10.1021/cr5007182 pmid: 25961125 |
[25] |
Nishiura, Y.; Gonzalez, K. J.; Cusumano, A. Q.; Stoltz, B. M. Org. Lett. 2023, 25, 6469.
|
[26] |
Wu, D.; Qiu, J.; Li, C.; Yuan, L.; Yin, H.; Chen, F. X. J. Org. Chem. 2019, 85, 934.
|
[27] |
Wang, C. J.; Sun, J.; Zhou, W.; Xue, J.; Ren, B. T. Zhang, G. Y. Mei, Y. L. Deng, Q. H. Org. Lett. 2019, 21, 7315.
|
[28] |
Shen, X.; Li, Y.; Wen, Z.; Cao, S.; Hou, X.; Gong, L. Chem. Sci. 2018, 9, 4562.
|
[29] |
Itoh, K.; Sibi, M. P. Org. Biomol. Chem. 2018, 16, 5551.
|
[30] |
Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J. Am. Chem. Soc. 1998, 120, 12355.
|
[31] |
Yang, X.; Cheng, F.; Kou, Y. D.; Pang, S.; Shen, Y. C.; Huang, Y. Y.; Shibata, N. Angew. Chem., Int. Ed. 2017, 129, 1532.
|
[32] |
Liu, X.; Li, M.; You, J.; Liu, B. Chin. J. Org. Chem. 2017, 37, 86. (in Chinese)
|
(刘迅绅, 李美美, 由君, 刘波, 有机化学, 2017, 37, 86.)
|
|
[33] |
Ono, F.; Ohta, Y.; Hasegawa, M.; Kanemasa, S. Tetrahedron Lett. 2009, 50, 2111.
|
[34] |
Zhang, J.; Liu, X.; Wang, R. Chem- Eur. J. 2014, 20, 4911.
|
[35] |
Zhang, Y.; Liao, Y.; Liu, X.; Yao, Q.; Zhou, Y.; Lin, L.; Feng, X. Chem.-Eur. J. 2016, 22, 15119.
doi: 10.1002/chem.201603056 pmid: 27576747 |
[36] |
Yao, Q.; Wang, Z.; Zhang, Y.; Liu, X.; Lin, L.; Feng, X. J. Org. Chem. 2015, 80, 5704.
|
[37] |
Liu, X. H.; Ruan, B. F.; Li, J.; Chen, F. H.; Song, B. A.; Zhu, H. L.; Bhadury, P. S.; Zhao, J. Mini-Rev. Med. Chem. 2011, 11, 771.
|
[38] |
Küçükgüzel, Ş. G.; Şenkardeş, S. Eur. J. Med. Chem. 2015, 97, 786.
doi: 10.1016/j.ejmech.2014.11.059 pmid: 25555743 |
[39] |
Liu, H.; Jia, H.; Wang, B.; Xiao, Y.; Guo, H. Org. Lett. 2017, 19, 4714.
|
[40] |
Wang, Y.; Zhang, P.; Di, X.; Dai, Q.; Zhang, Z. M.; Zhang, J. Angew. Chem., Int. Ed. 2017, 129, 16121.
|
[41] |
Lu, T. Molclus program, Version 1. 5,
|
[42] |
Stewart, J. J. P. J. Comput.-Aided Mol. Des. 1990, 4, 1.
|
[43] |
Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
|
[44] |
Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
|
[45] |
Grimme, S.; Antony. J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
|
[46] |
Petersson, G. A.; Bennett, A.; Tensfeldt, T. G; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.
|
[47] |
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
|
[48] |
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
|
[1] | Feifan Li, Kang Yu, Chuanzhi Ni, Yuanyuan Zhu, Jie Zeng, Shuangxi Gu. Chiral Fluorescent Probes for Determination of Both Concentration and Enantiomeric Composition of Amino Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(6): 1862-1869. |
[2] | Chun Gao, Xin Liu, Minghui Wang, Shuxian Liu, Tingting Zhu, Yikang Zhang, Erjun Hao, Qiliang Yang. Advances in Asymmetric Electrochemical Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 673-727. |
[3] | Hu Ma, Danfeng Huang, Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu. Synthesis of 3-Trifluoromethylpyrazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3257-3267. |
[4] | Hui Yan, Man Zhang, Lin Li, Teng Hu, Wulin Yang. Advances in the Catalytic Asymmetric Synthesis of Chiral Spiroketals [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3640-3657. |
[5] | Yuanyuan Ping, Haixia Song, Wangqing Kong. Recent Advances in Ni-Catalyzed Asymmetric Reductive Difunctionalization of Alkenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3302-3321. |
[6] | Quancheng Li, Lan Jiang, Rui Bai, Yongkang Han, Zhengning Li. Progress in the Synthesis of 3-Substituted Phthaides [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3390-3399. |
[7] | Lulu Yu, Qunshan Ding, Chuanjun Song, Junbiao Chang. Enantioselective Total Synthesis of (–)-Angustureine [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2507-2510. |
[8] | Chenchen Zou, Changhao Niu, Xinyu Liu, Chun Zhang. Recent Advances about Protoboration of Conjugated Dienes [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4240-4254. |
[9] | Zhang Lu, Liu Aiqin, Liu Huazheng, Wan Renzhong, Sun Shutao, Liu Lei. Catalytic Asymmetric Synthesis of β,γ-Alkynyl α-Amino Esters via Chemo- and Enantio-selective Transfer Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2904-2911. |
[10] | Wu Lizuo, Zhang Fengyuan, Zhang Zhentao, Shang Lei, Liu Yu. Ming-Phos/Copper(I)-Catalyzed Asymmetric Intermolecular[3+2] Cycloaddition of Azomethine Ylides with Trifluoromethyl Enones [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2460-2467. |
[11] | Guo Xiao, Wang Yazhou, Chen Jie, Li Gongqiang, Xia Ji-Bao. Recent Advances of CO2 Fixation via Asymmetric Catalysis for the Direct Synthesis of Optically Active Small Molecules [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2208-2220. |
[12] | Xu Ronghua, Yang He, Tang Wenjun. Efficient Synthesis of Chiral Drugs Facilated by P-Chiral Phosphorus Ligands [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1409-1422. |
[13] | Yao Biao, Wu Jiahao, Wang Yu, Jiang Huanfeng. Methods of Transition Metal-Catalyzed Asymmetric Oxidation [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3044-3064. |
[14] | Li Minglong, Cao Xixian, You Jun, Yu Yanchao, Wu Wenju, Liu Bo. Asymmetric 1,3-Dipolar Cycloaddition Reaction of C,N-Diarylnitrone with N-α,β-Unsaturated Acyl Compounds Catalyzed by Chiral Bisoxazoline Metal Complex [J]. Chin. J. Org. Chem., 2019, 39(6): 1642-1649. |
[15] | Jiang Haiyang, Li Qiang, Qi Qingjie, Yang Chenxi, Zhang Dan. Theoretical Study on the Conjugate Addition of Asymmetric Michael Addition of trans-1-Nitro-2-phenylethylene to 2-Methylpropion-aldehyde Catalyzed by Cinchona Alkaloid Derived Primary Amine [J]. Chin. J. Org. Chem., 2018, 38(4): 825-831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||