硼桥联三氮杂环卡宾配位的铁分子氮配合物:合成、表征和反应性质研究
凡一明a , 程骏b , 高亚飞b , 施敏a,b , 邓亮b
a 华东理工大学 化学与分子工程学院 结构可控先进功能材料及其制备教育部重点实验室 上海 200237;
b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 分子合成科学卓越中心 上海 200032
Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study
Fan Yiminga , Cheng Junb , Gao Yafeib , Shi Mina,b , Deng Liangb
a School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237;
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
摘要 研究了氮上取代基为1-金刚烷基的苯基硼桥联三氮杂环卡宾配体在铁促进的氮气活化转化反应中的应用.通过苯基硼桥联三氮杂环卡宾亚铁氯化物[PhB(AdIm)3 FeCl](1 )在氮气氛下与KC8 反应合成了一价铁分子氮配合物[PhB(AdIm)3 Fe(N2 )](2 ).进一步通过2 与KC8 和18-C-6的反应合成了零价铁分子氮配合物[K(18-C-6)(THF)]-[PhB(AdIm)3 Fe(N2 )](4 ).这些配合物均通过核磁共振、紫外吸收光谱、红外光谱、元素分析等表征,其中配合物2 和4 的结构经单晶X射线衍射表征确定.配合物2 和4 的N—N伸缩振动频率分别为1928和1807 cm-1 ,均为同价态铁末端分子氮配合物最低值.在过量KC8 和Me3 SiCl存在下,配合物1 ,2 和4 均可催化N2 的还原硅基化反应,生成N(SiMe3 )3 .催化体系的TON可达87.
关键词 :
氮杂环卡宾 ,
铁 ,
分子氮配合物 ,
氮气活化 ,
氮气硅基化
Abstract :The use of the N -adamantyl-substituted tris(NHC)borate ligand phenyltris(3-(1-adamantylimidazol-2-ylidene))borate (PhB(AdIm)3 - ) has enabled the preparation of the high-spin tetrahedral iron(I)-and iron(0)-N2 complexes[PhB(AdIm)3 Fe(N2 )] (2 ) and[K(18-C-6)(THF)] [PhB(AdIm)3 Fe(N2 )] (4 ), from the reduction of the ferrous precursor[PhB(AdIm)3 FeCl] (1 ) and the iron(I) complex 2 with KC8 under N2 , respectively. Single-crystal X-ray diffraction studies revealed a distorted tetrahedral coordination geometry for the iron centers in 2 and 4 with the terminally bonded N2 ligand sitting in the cavity composed by the three adamantyl groups of the borate ligand. The frequencies of the N-N stretching resonance (1928 and 1807 cm-1 ) of 2 and 4 are the lowest among the reported terminal N2 complexes of iron(I) and iron(0), respectively. 57 Fe Mössbauer spectrum (δ =0.59 mms-1 ; ΔE Q =1.31 mms-1 ) and solution magnetic susceptibility measurement (μ eff =5.2(1) μ B ) of 2 supported its high-spin iron(I) nature. The cyclic voltammogram of 2 measured in THF shows a quasi-reversible redox waves with E 1/2 =-2.11 V (vs SCE), which is assignable to the corresponding redox process of[PhB(AdIm)3 Fe(N2 )]1-/0 . In addition, the reaction of 2 with an excess amount of CO led to the formation of the bis(carbonyl)iron(I) complex,[PhB(AdIm)3 Fe(CO)2 ] (3 ), that was characterized by IR spectrum, solution magnetic susceptibility measurement, 1 H NMR, as well as elemental analysis. The protonation of 2 and 4 with HCl or HOTf at -78℃ only led to the formation of NH2 NH2 and NH3 in low yields[less than 9(3)% and 5(3)% (per mol Fe), respectively]. However, 1 , 2 , and 4 proved effective catalysts for the reductive silylation of N2 by KC8 and Me3 SiCl to afford N(SiMe3 )3 with comparable catalytic activity. The TON of these catalytic systems could reach 87 using 0.005 mmol of the catalyst, 2000 equiv. of KC8 , and 2000 equiv. of Me3 SiCl in 10 mL Et2 O at room temperature after 24 h.
Key words :
N -heterocyclic carbene
iron
dinitrogencomplex
N2 activation
reductive silylation of N2
收稿日期: 2018-03-10
出版日期: 2018-04-08
基金资助: 项目受科技部国家重点研发计划(No.2016YFA0202900)、国家自然科学基金(Nos.21725104,21690062和21432001)、中科院战略先导科技专项(No.XDB20000000)和中央高校基本科研业务费专项资金(No.222201717003)资助.
通讯作者:
施敏,E-mail:mshi@mail.sioc.ac.cn;邓亮,E-mail:deng@sioc.ac.cn
E-mail: mshi@mail.sioc.ac.cn;deng@sioc.ac.cn
引用本文:
凡一明, 程骏, 高亚飞, 施敏, 邓亮. 硼桥联三氮杂环卡宾配位的铁分子氮配合物:合成、表征和反应性质研究[J]. 化学学报, 2018, 76(6): 445-452.
Fan Yiming, Cheng Jun, Gao Yafei, Shi Min, Deng Liang. Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study. Acta Chim. Sinica, 2018, 76(6): 445-452.
链接本文:
http://manu19.magtech.com.cn/Jwk_hxxb/CN/10.6023/A18030095 或 http://manu19.magtech.com.cn/Jwk_hxxb/CN/Y2018/V76/I6/445
[1]
(a) Winter, H. C.; Burris, R. H. Annu. Rev. Biochem. 1976, 45, 409.
(b)
Bulen, W. A.; LeComte, J. R. Proc. Natl. Acad. Sci. U. S. A. 1966, 56, 979.
(c)
Mortenson, L. E. Fed. Proc. 1965, 24, 233.
(d)
Mortenson, L. E. Biochim. Biophys. Acta 1966, 127, 18.
(e)
Hageman, R. V.; Burris, R. H. Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 2699.
(f)
Dean, D. R.; Bolin, J. T.; Zheng, L. J. Bacteriol. 1993, 175, 6737.
(g)
Howard, J. B.; Rees, D. C. Annu. Rev. Biochem. 1994, 63, 235.
(h)
Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389.
(i)
Wang, Y.-S.; Li, J.-L. Prog. Nat. Sci. 2000, 10, 481. (王友绍, 李季伦, 自然科学进展, 2000, 10, 481.)
[2]
(a) Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.
(b)
Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974.
(c)
Lancaster, K. M.; Hu, Y.; Bergmann, U.; Ribbe, M. W.; DeBeer, S. J. Am. Chem. Soc. 2013, 135, 610.
(d)
Wiig, J. A.; Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2012, 337, 1672.
(e)
Wiig, J. A.; Lee, C. C.; Hu, Y.; Ribbe, M. W. J. Am. Chem. Soc. 2013, 135, 4982.
(f)
Zhang, C.-X.; Fan, H.-J.; Liu, Q.-T. Prog. Chem. 1997, 9, 266. (张纯喜, 樊红军, 刘秋田, 化学进展, 1997, 9, 266.)
(g)
Chen, Q.-L.; Chen, H.-B.; Cao, Z.-X.; Zhou, Z.-H.; Wan, H.-L.; Li, Y.; Li, J.-L. Sci. China, Chem. 2014, 44, 1849. (陈全亮, 陈洪斌, 曹泽星, 周朝晖, 万惠霖, 李颖, 李季伦, 中国科学:化学, 2014, 44, 1849.)
[3]
(a) Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041.
(b)
Coric, I.; Holland, P. L. J. Am. Chem. Soc. 2016, 138, 7200.
[4]
(a) Rittle, J.; Peters, J. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15898.
(b)
Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
(c)
Coric, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L. Nature 2015, 526, 96.
(d)
Ung, G.; Peters, J. C. Angew. Chem., Int. Ed. 2015, 54, 532.
(e)
Ouyang, Z.-W.; Cheng, J.; Li, L.-L.; Bao, X.-L.; Deng, L. Chem.-Eur. J. 2016, 22, 14162.
[5]
(a) Kastner, J.; Bl?chl, P. E. J. Am. Chem. Soc. 2007, 129, 2998.
(b)
Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J. B.; Rees, D. C. Science 2014, 345, 1620.
[6]
(a) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044.
(b)
Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883.
(c)
Ohki, Y.; Seino, H. Dalton Trans. 2016, 45, 874.
(d)
Danopoulos, A. A.; Wright, J. A.; Motherwell, W. B. Chem. Commun. 2005, 784.
(e)
Pugh, D.; Wells, N. J.; Evans, D. J.; Danopoulos, A. A. Dalton Trans. 2009, 7189.
(f)
Yu, R. P.; Darmon, J. M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. ACS Catal. 2012, 2, 1760.
(g)
Bartholomew, E. R.; Volpe, E. C.; Wolczanski, P. T.; Lobkovsky, E. B.; Cundari, T. R. J. Am. Chem. Soc. 2013, 135, 3511.
[7]
(a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
(b)
Glorius, F., N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, Vol. 21, Springer, Berlin, 2007.
(c)
Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122.
[8]
(a) Ingleson, M. J.; Layfield, R. A. Chem. Commun. 2012, 48, 3579.
(b)
Riener, K.; Haslinger, S.; Raba, A.; H??gerl, M. P.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. Chem. Rev. 2014, 114, 5215.
[9]
McSkimming, A.; Harman, W. H. J. Am. Chem. Soc. 2015, 137, 8940.
[10]
Cowley, R. E.; Bontchev, R. P.; Duesler, E. N.; Smith, J. M. Inorg. Chem. 2006, 45, 9771.
[11]
Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515.
[12]
(a) Ouyang, Z.-W.; Meng, Y.; Cheng, J.; Xiao, J.; Gao, S.; Deng, L. Organometallics 2016, 35, 1361.
(b)
Ohki, Y.; Hoshino, R.; Tatsumi, K. Organometallics 2016, 35, 1368.
[13]
Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768.
[14]
Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.
[15]
Hounjet, L. J.; Adhikari, D.; Pink, M.; Carroll, P. J.; Mindiola, D. J. Z. Anorg. Allg. Chem. 2015, 641, 45.
[16]
Smith, J. M. Comments Inorg. Chem. 2008, 29, 189.
[17]
Hickey, A. K.; Chen, C.; Pink, M.; Smith, J. M. Organometallics 2015, 34, 4560.
[18]
Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558.
[19]
Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y. J. Chem. Soc., Chem. Commun. 1993, 787.
[20]
Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.
[21]
Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
[22]
(a) Hills, A.; Hughes, D. A.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041.
(b)
Hall, D. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1996, 3539.
[23]
Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. J. Am. Chem. Soc. 2005, 127, 10184.
[24]
George, T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.
[25]
Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733. (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.)
[26]
Shiina, K. J. Am. Chem. Soc. 1972, 94, 9266.
[27]
Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.
[28]
Liao, Q.; Saffon-Merceron, N.; Mezailles, N. Angew. Chem., Int. Ed. 2014, 53, 14206.
[29]
Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. J. Am. Chem. Soc. 2017, 139, 5596.
[30]
Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 4638.
[31]
Gao, Y.-F.; Li, G.-Y.; Deng, L. J. Am. Chem. Soc. 2018, 140, 2239.
[32]
Weatherburu, M. W. Anal. Chem. 1967, 39, 971.
[33]
Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.
[1]
刘强, 王彬, 彭小水, 黄乃正. 格氏试剂参与的铁催化偶联反应中的添加物效应(英文) [J]. 有机化学, 2018, 38(1): 40-50.
[2]
Viacheslav I. Sokolov. N -环钯化二茂铁衍生物的合成和应用(英文) [J]. 有机化学, 2018, 38(1): 75-85.
[3]
郝延蔚, 田荣强, 吴迪, 段征, Mathey François. α -亚胺基磷杂二茂铁的合成、结构及配位化学研究 [J]. 有机化学, 2018, 38(1): 277-280.
[4]
黄家翩, 顾庆, 游书力. 过渡金属催化的碳氢键官能团化反应合成平面手性二茂铁化合物 [J]. 有机化学, 2018, 38(1): 51-61.
[5]
黄丹维, 何佳, 谷亚威, 何锋. 球磨微米硫化零价铁活化双氧水降解有机污染物的研究 [J]. 化学学报, 2017, 75(9): 866-872.
[6]
钱超, 绰洛鹏, 赵海英, 边占喜. 单取代与1,1'-双取代1,2,3-三唑基二茂铁衍生物的光谱、电化学与热性质 [J]. 有机化学, 2017, 37(9): 2328-2335.
[7]
李标, 刘秋霞, 周元清, 贾赵栋, 朱曼毓, 徐琰, 宋毛平. 二茂铁苯甲酸香豆素类化合物的合成与性质研究 [J]. 有机化学, 2017, 37(8): 2008-2014.
[8]
李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰. 从氮气直接合成含氮有机化合物 [J]. 化学学报, 2017, 75(8): 733-743.
[9]
王凡, 胡宇才, 沈安, 曹育才. 新型氮杂环卡宾-钯配合物的设计、制备及在Buchwald-Hartwig交叉偶联反应中的应用 [J]. 有机化学, 2017, 37(8): 2050-2056.
[10]
程鹏飞, 王莹, 程宽, 李芳柏, 秦好丽, 刘同旭. 红壤可变电荷矿物的酸碱缓冲能力及表面络合模型 [J]. 化学学报, 2017, 75(6): 637-644.
[11]
周立祥. 生物矿化:构建酸性矿山废水新型被动处理系统的新方法 [J]. 化学学报, 2017, 75(6): 552-559.
[12]
汤晶, 汤琳, 冯浩朋, 董浩然,章毅, 刘思诗, 曾光明. 硫化纳米零价铁去除水体污染物的研究进展 [J]. 化学学报, 2017, 75(6): 575-582.
[13]
夏雪芬, 滑熠龙, 黄潇月, 凌岚, 张伟贤. 纳米零价铁对水中砷和硒去除的比较研究 [J]. 化学学报, 2017, 75(6): 594-601.
[14]
陈海军, 黄舒怡,张志宾, 刘云海, 王祥科. 功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展 [J]. 化学学报, 2017, 75(6): 560-574.
[15]
刘承帅, 李芳柏, 陈曼佳, 廖长忠, 童辉, 华健. Fe(II)催化水铁矿晶相转变过程中Pb的吸附与固定 [J]. 化学学报, 2017, 75(6): 621-628.