Acta Chim. Sinica ›› 2019, Vol. 77 ›› Issue (2): 121-129.DOI: 10.6023/A18100412 Previous Articles     Next Articles



刘静a,b, 顾天航a,b, 王伟a,c, 刘爱荣a,b, 张伟贤a,b   

  1. a 污染控制与资源化研究国家重点实验室 上海 200092;
    b 同济大学 环境科学与工程学院 上海 200092;
    c 同济大学 化学科学与工程学院 上海 200092
  • 投稿日期:2018-10-02 发布日期:2018-11-13
  • 通讯作者: 刘爱荣,
  • 作者简介:刘静,同济大学环境科学与工程学院2014级博士生,研究方向为纳米零价铁在水相中性质演变.读博期间获得多次奖学金;顾天航,同济大学环境科学与工程学院2018级博士生,研究方向为纳米零价铁富集水中稀有元素;王伟,博士,同济大学化学专业博士后,主要从事铁基纳米材料用于重金属污染控制及资源化方面的研究及实践工作,作为主要完成人之一将铁基纳米技术成功应用于复杂多金属废水处理工程,已发表SCI论文10余篇;刘爱荣,博士,硕士生导师,研究方向主要有铁基纳米材料的地球化学循环、水污染控制环境纳米材料、水环境化学理论与技术.主持国家自然科学基金项目两项,发表SCI论文10余篇.
  • 基金资助:


Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media

Liu Jinga,b, Gu Tianhanga,b, Wang Weia,c, Liu Ai-ronga,b, Zhang Wei-xiana,b   

  1. a State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092;
    b College of Environmental Science and Engineering, Tongji University, Shanghai 200092;
    c School of Chemical Science and Engineering, Tongji University, Shanghai 200092
  • Received:2018-10-02 Published:2018-11-13
  • Contact: 10.6023/A18100412
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 41673096, 41772243, 51578398) and National Postdoctoral Program for Innovative Talents (BX201700172).

The unique "core-shell" structure endows nanoscale zero-valent iron (nZVI) rich aquatic surface chemistry properties. Transformation of surface chemistry and crystal phase of nZVI affect its reactivity and environmental transport and fate. Recent advances on the surface chemistry and phase transformation of nZVI in aqueous media are highlighted in this paper focusing on a basic theory of nZVI for pollution control and environmental application. Surface chemistry and phase of both fresh and reacted nZVI are presented. The structure, composition and properties of nanoparticles are determined not only by reaction time but also by environmental conditions. Specifically, the influences of dissolved oxygen, hydraulic conditions (static and stirring), types and concentrations of heavy metals (U(VI), Cr(VI), Se(IV)) and anions (NO3-, SO42-, HPO42- and HCO3-) are investigated. In addition, the effect of surface modification with polyelectrolytes, including anionic polyacrylamide (APAM) and carboxymethylcellulose sodium (CMC), on microstructure, morphology and composition of nanoparticles in aqueous phase was discussed. Results demonstrate that environmental conditions have significant impacts on particles structure, composition and properties, consequently on nZVI performance for pollutant removal. After corrosion under different aqueous conditions, the core-shell structured nZVI are distorted and the metallic iron core is transformed into different iron oxides/hydroxides, such as γ-Fe2O3, Fe3O4 and γ-FeOOH. These iron (hydr)oxides exhibit different surface complexation and affinity proprieties, thus eventually affecting the pollutant removal performance and the environmental fate of reaction products. More research on the effect of dynamic structure transformation by different types of pollutants, and a reaction model between the surface chemistry/phase transformation and removal performance are needed to deepen our understanding on nZVI surface chemistry, and develop more effective technologies of environmental applications.

Key words: nanoscale zero-valent iron, aquatic media, nanoscale zero-valent iron, aquatic media, surface chemistry, crystal phase, surface chemistry, crystal phase, transformation, transformation