Acta Chimica Sinica ›› 2019, Vol. 77 ›› Issue (9): 783-793.DOI: 10.6023/A19060208 Previous Articles     Next Articles

Special Issue: 有机自由基化学



张振ab, 龚莉b, 周晓渝b, 颜思顺b, 李静b*(), 余达刚b*()   

  1. a成都大学药学与生物工程学院 农业农村部杂粮加工重点实验室 成都 610106
    b四川大学化学学院 绿色化学与技术教育部重点实验室 成都 610064
  • 收稿日期:2019-06-12 出版日期:2019-09-15 发布日期:2019-07-12
  • 通讯作者: 李静,余达刚;
  • 作者简介:张振, 特聘副研究员, 1985年出生于山西怀仁市, 2007年在四川大学化学学院获得学士学位, 2017年在中科院成都有机所获得博士学位(导师: 支永刚研究员和余达刚教授), 随后在成都大学药学与生物工程学院工作至今. 其研究兴趣主要是药物合成、二氧化碳化学.|李静, 助理研究员, 1981年出生于四川广安市, 2006年在四川大学化学学院获得学士学位, 2009年在四川大学化学学院获得硕士学位(导师: 余孝其教授), 随后在四川抗菌素工业研究所工作至2012年, 2012年6月在四川大学化学学院工作至今. 其研究兴趣主要是二氧化碳化学、无机-有机杂化材料的合成.|余达刚, 2007年本科毕业于四川大学化学学院, 2012年博士毕业于北京大学化学与分子工程学院(导师: 施章杰教授), 2012~2014年作为洪堡学者在德国明斯特大学(导师: Frank Glorius教授)开展博士后研究, 2015年回到四川大学开展教学和独立研究工作, 被聘为教授、博士生导师. 主要从事二氧化碳利用和可见光催化等绿色可持续发展化学研究, 已发表学术论文60余篇, 参与攥写英文专著2个章节, 受邀在国内外会议上做邀请报告和主题报告10余次. 曾入选2015年中组部“青年千人”、四川省“青年千人”和2016年“Organic Chemistry FrontiersEmerging Investigators; 主持了2018年国家自然科学基金委优秀青年基金和霍英东青年教师基金等多项科研项目; 曾获得2017年Thieme Chemistry Journal Award、2017年ACP Lectureship Awards、2018年中国化学会青年化学奖、2018年四川大学“优秀教师”等奖励.
  • 基金资助:

Radical-Type Difunctionalization of Alkenes with CO2

Zhang, Zhenab, Gong, Lib, Zhou, Xiao-Yub, Yan, Si-Shunb, Li, Jingb*(), Yu, Da-Gangb*()   

  1. a Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106
    b Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064
  • Received:2019-06-12 Online:2019-09-15 Published:2019-07-12
  • Contact: Li, Jing,Yu, Da-Gang;
  • Supported by:
    Project supported by the “973” Project from the Ministry of Science and Technology of China(No.2015CB856600);the National Natural Science Foundation of China(Nos.21822108);the National Natural Science Foundation of China(21801025);the Fok Ying Tung Education Foundation(No.161013);the Fundamental Research Funds for the Central Universities.

CO2 is an ideal C1 source in chemical transformations. It is of great significance to utilize CO2 in chemical conversion to synthesize high value-added compounds, including carboxylic acids and carbonyl-containing heterocycles. On the other hand, the difunctionalization of olefins is an important organic reaction, which can efficiently convert easily available olefins into important compounds with structural diversity. However, due to the low reactivity of CO2 and the difficulty in controlling the selectivity, the difunctionalization of olefins with CO2 is highly challenging. Recently, the significant progress of radical chemistry has provided new strategies and promoted the development of novel transformations in this field. This Perspective summarizes the recent progress of the radical-type difunctionalization of olefins with CO2, including the oxy-alkylation, carbocarboxylation, silacarboxylation, thiocarboxylation, and dicarboxylation of alkenes with CO2. At the same time, we also highlight the mechanism with radicals and four kinds of pathways are proposed: (1) Free radicals attack olefins to form new carbon radical intermediates. The radicals are then oxidized to form carbocations, which are further captured by carbonates or carbamates. It is also possible for direct C—O bonding reaction or sequent C—I and C—O bonds formation. (2) The new carbon radical intermediates, in-situ generated through attack of alkenes with radicals, are reduced via single electron transfer into carbanions, which could attack CO2 to form C—C bonds. (3) CO2 is reduced into CO2 radical anions in the highly reductive reaction conditions. Once generated, the CO2 radical anions might attack olefins to form carboxylate bearing more stable carbon radical intermediates (such as benzylic ones) and further form C—C bonds or carbon-heteroatom bonds. (4) Olefins are reduced via single electron transfer into alkenyl free radical anions in the highly reductive reaction conditions. These anions may attack CO2 to form carboxylate bearing carbon radical intermediates and are further reduced to generate carbanions. Finally they may attack another CO2 to form succinic acid derivatives. We point out the challenges and predict the future development in the field, including the more challenging substrates, more reaction types, better selectivities, and deeper mechanistic understanding.

Key words: carbon dioxide, olefin, difunctionalization, radical, visible-light photoredox catalysis