有机化学 ›› 2022, Vol. 42 ›› Issue (6): 1640-1650.DOI: 10.6023/cjoc202112009 上一篇 下一篇
综述与进展
收稿日期:
2021-12-04
修回日期:
2022-01-23
发布日期:
2022-02-17
通讯作者:
汤立军
基金资助:
Yuetian Guo, Yongxin Pan, Lijun Tang()
Received:
2021-12-04
Revised:
2022-01-23
Published:
2022-02-17
Contact:
Lijun Tang
Supported by:
文章分享
兼具激发态分子内质子转移(ESIPT)和聚集诱导发光(AIE)性质的反应型荧光探针, 因其具有较好的生物相容性、良好的传感性能、较大的斯托克斯位移以及较高的荧光量子效率等优点, 在近几年来被广泛应用于检测各种阴离子、金属阳离子和生物分子中. 简要总结了结构简单, 既是AIE结构模块又是ESIPT结构模块的苯并噻唑、水杨醛席夫碱、肼二腙、查尔酮荧光团等反应型荧光探针的研究进展, 并对相关研究进行了总结和展望.
郭钺甜, 潘永鑫, 汤立军. 聚集诱导发光(AIE)和激发态分子内质子转移(ESIPT)结构融合的反应型荧光探针的研究进展[J]. 有机化学, 2022, 42(6): 1640-1650.
Yuetian Guo, Yongxin Pan, Lijun Tang. Progresses in Reactive Fluorescent Probes with Fused Aggregation- Induced Emission (AIE) and Excited State Intramolecular Proton Transfer (ESIPT) Structures[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1640-1650.
[1] |
Xu, Z.; Wang, Y.; Wang, Y.; Li, J.; Luo, W.; Wu, W.; Fan, Y. Spectrochim. Acta, Part A 2019, 212, 146.
|
[2] |
Liao, Z.; Zheng, J.; Tan, H.; Zheng, X.; Jin, L. RSC Adv. 2016, 6, 33798.
doi: 10.1039/C6RA01030J |
[3] |
Samanta, S.; P. D.; Ramesh, A.; Das, G. Chem. Commun. 2016, 52, 10381.
doi: 10.1039/C6CC03910C |
[4] |
Visscher, A.; Bachmann, S.; Schnegelsberg, C.; Teuteberg, T.; Mata, R.; Stalke, D. Dalton Trans. 2016, 45, 5689.
doi: 10.1039/c6dt00557h pmid: 26928871 |
[5] |
Shi, W.; Chen, Y.; Chen, X.; Xie, Z.; Hui, Y. J. Lumin. 2016, 174, 56.
|
[6] |
Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. Tetrahedron Lett. 2014, 55, 1471.
doi: 10.1016/j.tetlet.2014.01.056 |
[7] |
Che, W.; Zhang, L.; Li, Y.; Zhu, D.; Xie, Z.; Li, G.; Zhang, P.; Su, Z.; Dou, C.; Tang, B. Anal. Chem. 2019, 91, 3467.
doi: 10.1021/acs.analchem.8b05024 |
[8] |
Weller, A.; Elektrochem, Z. Ber. Bunsen-Ges. 1956, 60, 1144.
|
[9] |
Knibbe, H.; Dieter Rehm, D.; Weller, A. Ber. Bunsen-Ges. 1968, 72, 125.
|
[10] |
Massue, J.; Felouat, A.; Curtil, M.; Vérité, P. M.; Jacquemin, D.; Ulrich, G. Dyes Pigm. 2019, 160, 915.
doi: 10.1016/j.dyepig.2018.09.014 |
[11] |
Lampkin, B.; Monteiro, C.; Powers, E.; Bouc, P.; Kelly, J.; VanVeller, B. Org. Biomol. Chem. 2019, 17, 1076.
doi: 10.1039/c8ob02673d pmid: 30534794 |
[12] |
Niu, Y.; Wang, R.; Shao, P.; Wang, Y.; Zhang, Y. Chemistry 2018, 24, 16670.
|
[13] |
Munch, M.; Curtil, M.; Vérité, P.; Jacquemin, D.; Massue, J.; Ulrich, G. Eur. J. Org. Chem. 2018, 5, 1134
|
[14] |
Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Chem. Commun. 2001, 18, 1740.
|
[15] |
Xu, B.; Chi, Z.; Yang, Z.; Chen, J.; Deng, S.; Li, H.; Li, X.; Zhang, Y.; Xu, N.; Xu, J. J. Mater. Chem. 2010, 20, 4135.
|
[16] |
Li, X.; Chi, Z.; Xu, B.; Li, H.; Zhang, X.; Zhou, W.; Zhang, Y.; Liu, S.; Xu, J. J. Fluoresc. 2011, 21, 1969.
doi: 10.1007/s10895-011-0896-1 |
[17] |
Ma, C.; Xu, B.; Xie, G.; He, J.; Zhou, X.; Peng, B.; Jiang, L.; Xu, B.; Tian, W.; Chi, Z.; Liu, S.; Zhang, Y.; Xu, J. Chem. Commun. 2014, 50, 7374.
doi: 10.1039/C4CC01012D |
[18] |
Gu, X.; Yao, J.; Zhang, G.; Zhang, C.; Yan, Y.; Zhao, Y.; Zhang, D. Chem. Asian J. 2013, 8, 2362.
doi: 10.1002/asia.201300451 |
[19] |
La, D.; Bhosale, S.; Jones, L.; Bhosale, S. ACS Appl. Mater. Interfaces 2018, 10, 12189.
doi: 10.1021/acsami.7b12320 |
[20] |
Mei, J.; Huang, Y.; Tian, H. ACS Appl. Mater. Interfaces 2018, 10, 12217.
doi: 10.1021/acsami.7b14343 |
[21] |
Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
doi: 10.1021/acs.chemrev.5b00263 pmid: 26492387 |
[22] |
La, D.; Bhosale, S.; Jones, L. ACS Appl. Mater. Interfaces 2018, 10, 12189.
doi: 10.1021/acsami.7b12320 |
[23] |
Liang, J.; Tang, B.; Liu, B. Chem. Soc. Rev. 2015, 10, 2798.
|
[24] |
Li, Y. Y.; Liu, S. J.; Ni, H. W.; Zhang, H. K.; Zhang, H. Q.; Chuah, C.; Ma, C.; Wong, K. S.; Lam, J. W. Y.; Kwok, R. T. K.; Qian, J.; Lu, X. F.; Tang, B. Z. Angew. Chem., Int. Ed. 2020, 59, 12822.
doi: 10.1002/anie.202005785 |
[25] |
Zhang, J.; Wang, Q.; Guo, Z.; Zhang, S.; Yan, C.; Tian, H.; Zhu, W. Adv. Funct. Mater. 2019, 29, 1808153.
doi: 10.1002/adfm.201808153 |
[26] |
Jiang, M. J.; Gu, X. G.; Lam, J. W. Y.; Zhang, Y. L.; Kwok, R. T. K.; Wong, K. S.; Tang, B. Z. Chem. Sci. 2017, 8, 5440.
doi: 10.1039/C7SC01400G |
[27] |
Zhang, J. D.; Liu, A. C.; Chen, J.; Yuan, G. H.; Jin, H. F. Prog. Chem. 2020, 32, 594. (in Chinese)
|
( 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰, 化学进展, 2020, 32, 594.)
doi: 10.7536/PC190819 |
|
[28] |
Chen, L.; D. W.; Lim, C.; Kim, D. Chem. Commun. 2017, 53, 4791.
doi: 10.1039/C7CC01695F |
[29] |
Huang, J.; Li, T.; Liu, R.; Zhang, R.; Wang, Q.; Li, N.; Gu, Y.; Wang, P. Sens. Actuators, B 2017, 248, 257.
|
[30] |
Liu, Y.; Nie, J.; Niu, J.; Wang, W.; Lin, W. J. Mater. Chem. B 2018, 6, 1973
doi: 10.1039/C8TB00075A |
[31] |
Chen, Q.; Zhang, Y.; Du, W.; Wang, Y.; Huang, Y.; Yang, Q.; Zhang, Q. J. Mater. Chem. B 2017, 5, 7736.
doi: 10.1039/C7TB02076G |
[32] |
Zhang, P.; Nie, X.; Gao, M.; Zeng, F.; Qin, A.; Wu, S.; Tang, B. Mater. Chem. Front. 2017, 1, 838.
doi: 10.1039/C6QM00223D |
[33] |
Sen Gupta, A.; Paul, K.; Luxami, V. Sens. Actuators, B 2017, 246, 653.
|
[34] |
Hu, Z.; Zhang, H.; Chen, Y.; Wang, Q.; Elsegood, M.; Teat, S.; Feng, X.; Islam, M.; Wu, F.; Tang, B. Dyes Pigm. 2020, 175, 108175.
doi: 10.1016/j.dyepig.2019.108175 |
[35] |
Xie, Y.; Yan, L.; Tang, Y.; Tang, M.; Wang, S.; Bi, L.; Sun, W.; Li, J. J. Fluoresc. 2019, 29, 399.
doi: 10.1007/s10895-019-02348-6 pmid: 30680508 |
[36] |
Yan, L.; Li, R.; Wang, Z.; Qi, Z. RSC Adv. 2016, 6, 63874.
doi: 10.1039/C6RA09920C |
[37] |
Wang, X.; Y. H.; W. L.; C. L.; W. Z.; Y. Z.; Feng, X. Anal. Methods 2017, 9, 1872.
doi: 10.1039/C7AY00167C |
[38] |
Chen, K.; Han, B. C.; Ji, S. X.; Sun, J.; Gao, Z. Z.; Hou, X. F. Acta Chim. Sinica 2019, 77, 365. (in Chinese)
doi: 10.6023/A18120484 |
( 陈凯, 韩百川, 嵇思鑫, 孙瑾, 高振忠, 侯贤锋, 化学学报, 2019, 77, 365.)
doi: 10.6023/A18120484 |
|
[39] |
Bai, L.; Feng, W.; Feng, G. Dyes Pigm. 2019, 163, 483.
doi: 10.1016/j.dyepig.2018.12.013 |
[40] |
Xu, D.; Tang, L.; Tian, M.; He, P.; Yan, X. Tetrahedron Lett. 2017, 58, 3654.
doi: 10.1016/j.tetlet.2017.08.016 |
[41] |
Wei, X.; Wu, Q.; Feng, Y.; Chen, M.; Zhang, S.; Chen, M.; Zhang, J.; Yang, G.; Ding, Y.; Yang, X.; Ye, Q.; Zhang, Y.; Gu, Q.; Wang, J.; Wu, S.; Pang, R.; Li, Y. Sens. Actuators, B 2019, 304, 127242.
|
[42] |
Feng, B.; Liu, Y.; Huang, S.; Huang, X.; Huang, L.; Liu, M.; Wu, J.; Du, T.; Wang, S.; Feng, X.; Zeng, W. Sens. Actuators, B 2020, 325, 128786.
|
[43] |
Tang, L.; Xia, J.; Zhong, K.; Tang, Y.; Gao, X.; Li, J. Dyes Pigm. 2020, 178, 108379.
doi: 10.1016/j.dyepig.2020.108379 |
[44] |
Naha, S.; Velmathi, S. Microchem. J. 2020, 153, 104499.
doi: 10.1016/j.microc.2019.104499 |
[45] |
Qin, J.; Wang, B.; Yang, Z.; Yu, K. Sens. Actuators, B 2016, 224, 892.
|
[46] |
Wang, Q.; Chen, Q.; Li, C.; Lai, Q.; Zou, F.; Liang, F.; Jiang, G.; Wang, J. Microchem. J. 2020, 153, 104503.
doi: 10.1016/j.microc.2019.104503 |
[47] |
Xu, D.; Liu, M.; Zou, H.; Tian, J.; Huang, H.; Wan, Q.; Dai, Y.; Wen, Y.; Zhang, X.; Wei, Y. Talanta 2017, 174, 803.
doi: 10.1016/j.talanta.2017.07.010 |
[48] |
Liu, H.; X. W.; Yu Xiang, Y.; Tong, A. Anal. Methods 2015, 7, 5028.
doi: 10.1039/C5AY00653H |
[49] |
Cui, L.; Baek, Y.; Lee, S.; Kwon, N.; Yoon, J. Mater. Chem. C 2016, 4, 2909
doi: 10.1039/C5TC03272E |
[50] |
Leung, C.; Wang, Z.; Zhao, E.; Hong, Y.; Chen, S.; Kwok, R. T.; Leung, A. C.; Wen, R.; Li, B.; Lam, J. W.; Tang, B. Z. Adv. Healthcare Mater. 2016, 5, 427.
doi: 10.1002/adhm.201500674 |
[51] |
Peng, L.; Xiao, L.; Ding, Y.; Xiang, Y.; Tong, A. J. Mater. Chem. B 2018, 6, 3922.
doi: 10.1039/c8tb00414e pmid: 32254320 |
[52] |
Shen, Y.; Li, M.; Yang, M.; Zhang, Y.; Li, H.; Zhang, X. Spectrochim. Acta, Part A 2019, 222, 117230.
|
[53] |
Jin, X.; Di, X.; Huang, H.; Liu, J.; Sun, X.; Zhang, X.; Zhu, H. RSC Adv. 2015, 5, 87306.
doi: 10.1039/C5RA16614D |
[54] |
Zhu, K.; Qin, T.; Zhao, C.; Luo, Z.; Huang, Y.; Liu, B.; Wang, L. Sens. Actuators, B 2018, 276, 397.
|
[55] |
Dai, F.; Zhao, M.; Yang, F.; Wang, T.; Wang, C. Dyes Pigm. 2020, 183, 108627.
doi: 10.1016/j.dyepig.2020.108627 |
[56] |
Czernel, G.; Budziak, I.; Oniszczuk, A.; Karcz, D.; Pustula, K.; Gorecki, A.; Matwijczuk, A.; Gladyszewska, B.; Gagos, M.; Niewiadomy, A.; Matwijczuk, A. Molecules 2020, 25, 4168.
doi: 10.3390/molecules25184168 |
[57] |
Dwivedi, B. K.; Singh, V. D.; Paitandi, R. P.; Pandey, D. S. ChemPhysChem 2018, 19, 2672.
doi: 10.1002/cphc.201800579 |
[58] |
Long, R.; Tang, C.; Xu, J.; Li, T.; Tong, C.; Guo, Y.; Shi, S.; Wang, D. Chem. Commun. 2019, 55, 10912.
doi: 10.1039/C9CC05212G |
[59] |
Singhal, D.; Althagafi, I.; Kumar, A.; Yadav, S.; Prasad, A. K.; Pratap, R. New J. Chem. 2020, 44, 12019.
doi: 10.1039/D0NJ02236E |
[1] | 张向阳, 吴庆林, 王菲菲, 申有名, 唐裕才. 一种以2-羟基-N,N-二甲基苄胺为新识别基团的钯离子近红外荧光探针及其细胞成像[J]. 有机化学, 2022, 42(6): 1786-1791. |
[2] | 文乙评, 解正峰, 史天柱, 褚义成, 周荣贵, 陶奕杉, 梁焕敏, 邱海燕, 赵云辉. 三唑基团功能化的三苯胺类Cu2+荧光探针的合成及在检测和HeLa细胞中的应用[J]. 有机化学, 2022, 42(5): 1463-1473. |
[3] | 李娜, 谭啸峰, 杨晴来. 肠道微生物菌群成像标记策略及其应用的研究进展[J]. 有机化学, 2022, 42(5): 1375-1386. |
[4] | 卢辉旭, 唐永和, 周红梅, 林伟英. 一种荧光增强型甲醛荧光探针的合成及其性能研究[J]. 有机化学, 2022, 42(4): 1163-1169. |
[5] | 何雨晴, 陈琳, 贺瑞丽, 钟克利, 汤立军. 环糊精衍生物及包合物构建荧光探针的研究进展[J]. 有机化学, 2022, 42(3): 785-795. |
[6] | 吴绵园, 喻艳超, 刘洋, 由君, 武文菊, 刘波. 一种连续识别Cu2+和草甘膦荧光探针的合成及应用研究[J]. 有机化学, 2022, 42(3): 803-811. |
[7] | 何佳伟, 解正峰, 薛松松, 刘宇程, 石伟, 陈鑫. 高选择性快速检测Cu2+的水杨酰腙型探针的合成及在逻辑门和吸附中的应用[J]. 有机化学, 2021, 41(7): 2839-2847. |
[8] | 王超, 王鑫, 钟克利, 侯淑华, 燕小梅, 边延江, 汤立军. 一种水溶液中裸眼识别HSO3-/SO32-的长波长荧光探针及其应用[J]. 有机化学, 2021, 41(6): 2417-2423. |
[9] | 张成路, 张彦朋, 王华玉, 赵洹影, 尚美彤, 张璐, 李香玲, 王一鸣. 基于三唑并噻二唑-香豆素体系的高选择性识别硫化氢比率型荧光探针的合成及应用[J]. 有机化学, 2021, 41(6): 2384-2392. |
[10] | 赵云, 李艳芳, 李蓉晓, 王雅卿, 樊晓霞. 基于亲电氯代反应的次氯酸荧光探针构建及细胞成像研究[J]. 有机化学, 2021, 41(5): 1974-1981. |
[11] | 张明光, 李明新, 杨益琴, 徐徐, 宋杰, 王忠龙, 王石发. 诺蒎酮基喹唑啉-2-胺型铜离子荧光探针的合成及其应用研究[J]. 有机化学, 2021, 41(3): 1168-1176. |
[12] | 钟克利, 周璐璐, 陈琳, 汤立军, 高雪, 刘秀英, 庞秀秀, 燕小梅. 2-[3-氰基呋喃-2(5H)-亚基]丙二腈衍生物的合成及其对Pd2+的识别[J]. 有机化学, 2021, 41(3): 1124-1130. |
[13] | 李芳, 唐永和, 郭锐, 林伟英. 高灵敏线粒体靶向近红外二氧化硫荧光探针的开发及细胞、小鼠成像研究[J]. 有机化学, 2021, 41(3): 1108-1116. |
[14] | 陈思鸿, 陈淇, 罗时荷, 曹西颖, 杨国贤, 曾晓晴, 汪朝阳. 基于三苯胺的荧光探针设计、合成与应用研究进展[J]. 有机化学, 2021, 41(3): 919-933. |
[15] | 陈恩庆, 唐永和, 王蕾, 任江波, 林伟英. 基于硝基还原机理的一氧化碳荧光探针的开发及细胞成像研究[J]. 有机化学, 2021, 41(3): 1200-1206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||