化学学报 ›› 2024, Vol. 82 ›› Issue (9): 987-1000.DOI: 10.6023/A24040134 上一篇    下一篇

综述

旋涂两步法甲脒铅基钙钛矿太阳能电池近期研究进展

陈宇波a,†, 郑德旭b,†, 王楠a, 刘吉双b, 于凤阳a,*(), 吴飒建b, 刘生忠a,c,*(), 李智鹏b   

  1. a 中国科学院大连化学物理研究所大连清洁能源国家实验室 大连 116023
    b 中核光电科技(上海)有限公司 上海 201306
    c 陕西师范大学材料科学与工程学院 应用表面与胶体化学教育部重点实验室 陕西省先进能源器件重点实验室陕西省先进能源技术工程实验室 先进能源材料研究所 西安 710119
  • 投稿日期:2024-04-29 发布日期:2024-07-09
  • 作者简介:

    陈宇波, 山西大学2022级硕士研究生, 研究方向为钙钛矿太阳能电池.

    于凤阳, 博士, 2015年于陕西师范大学获材料化学学士学位, 2021年于日本九州工业大学获得工学博士学位, 目前主要从事钙钛矿太阳能光电器件性能研究.

    刘生忠, 教授, 陕西师范大学-中国科学院大连化学物理研究所特聘教授, 洁净能源国家实验室太阳能部副部长、陕西师范大学新能源高等技术研究院院长, 陕西省能源新材料与器件重点实验室主任、陕西师范大学陕西省能源新技术工程实验室主任, 陕西师范大学应用表面与胶体化学教育部重点实验室表界面化学与能源材料方向带头人. 研究领域集中在太阳能电池、钙钛矿单晶材料、纳米材料、薄膜材料、光电功能材料、激光表面处理和光伏技术的开发、放大和生产.

  • 基金资助:
    国家重点研究计划项目(2022YFE0138100); 国家重点研究计划项目(SQ2022YFE010083); 国家自然科学基金项目(52350710208); 榆林学院合作基金和大连清洁能源国家实验室项目(YLU-DNL基金2022011)

Recent Progress of Two-step Spin-coated Formamidinium Lead-based Perovskite Solar Cells

Yubo Chena,†, Dexu Zhengb,†, Nan Wanga, Jishuang Liub, Fengyang Yua,*(), Sajian Wub, Shengzhong Liua,c,*(), Zhipeng Lib   

  1. a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    b CNNP Optoelectronics Technology (Shanghai) Co., Ltd., Shanghai 201306, China
    c Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Material: Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
  • Received:2024-04-29 Published:2024-07-09
  • Contact: *E-mail: yufengyang@dicp.ac.cn;szliu@dicp.ac.cn
  • About author:
    † These authors contributed equally to this work
  • Supported by:
    National Key Research Program of China(2022YFE0138100); National Key Research Program of China(SQ2022YFE010083); National Nature Science Foundation of China(52350710208); Cooperation Foundation of Yulin University, and Dalian National Laboratory for Clean Energy(YLU-DNL fund 2022011)

近年来, 钙钛矿太阳能电池因其优越的光电转换性能而备受关注. 然而, 在扩大规模过程中往往会出现严重的效率损失, 这限制了其进一步商业化. 开发一种低成本、可扩展、可控制的生产方法至关重要. 在各种制备方法中, 溶液两步法具有制备简单、重复性好和操作性高等优点, 有利于实现可控制备大面积高质量钙钛矿薄膜, 在商业应用中潜力巨大. 基于钙钛矿的制备被分成两步这一特性, 两步法的调控方向更多, 目前已有众多研究工作被报道. 本篇综述详细介绍旋涂溶液两步法在添加剂工程、界面修饰、溶剂工程和其他工程的最新进展, 并分析旋涂溶液两步法面临的挑战和未来的研究前景, 旨在对大面积、高性能的钙钛矿太阳能电池研究提供有益参考.

关键词: 钙钛矿, 太阳能电池, 两步法, 旋涂, 光电转化效率

In recent years, perovskite solar cells (PSCs) have gained much attention due to their superior photoelectric conversion performance, and the photoelectric conversion efficiency (PCE) of the perovskite solar cells prepared in laboratories up to 26%. However, despite these advancements, the scaling-up process often leads to significant efficiency losses, which limits its further commercialization. It is crucial to develop an affordable, scalable, and controllable production method. The most commonly used preparation methods for perovskite films are the one-step method and the two-step method. Unfortunately, the one-step method suffers from a narrow processing window and environmental concerns as it requires the addition of an anti-solvent, which leads to poor reproducibility and hinders the scaling-up process. In contrast, the two-step method exhibits high reproducibility and friendliness to operators and the environment as perovskite films' growth is divided into two parts. In addition, the two-step spin coating solution method stands out for its easy fabrication, good repeatability, and high operability. It is conducive to the controllable preparation of high-quality large-area perovskite films and has great potential in commercial applications. Based on the characteristics that the preparation of perovskite is divided into two steps, the two-step solution method has more regulatory directions, and a lot of research work has been reported. In this review, the recent progress and the problems of the two-step spin coating solution method in additive engineering, interface modification, solvent engineering, and other engineering are described in detail, and the challenges and future research prospects of the two-step spin coating solution method are also analyzed. Additive engineering involves incorporating additives into inorganic components, organic components, and charge transport layers. Interface modification encompasses electron transport layer- perovskite interface as well as perovskite-hole transport layer interfaces. The purpose of this review is to provide insight into the research of large-area and high-performance perovskite solar cells.

Key words: perovskite, solar cells, two-step, spin-coating, photoelectric conversion efficiency