化学学报 ›› 2008, Vol. 66 ›› Issue (4): 471-475. 上一篇    下一篇

研究论文

超临界条件下离子液体催化苯与丙烯烷基化的反应机理研究

孙学文*, 赵锁奇   

  1. (中国石油大学(北京)重质油加工国家重点实验室 北京 102249)
  • 投稿日期:2007-07-13 修回日期:2007-09-12 发布日期:2008-02-28
  • 通讯作者: 孙学文

Alkylation Mechanism of Benzene with Propylene Catalyzed by Ionic Liquid under Super Critical Conditions

SUN Xue-Wen*; ZHAO Suo-Qi   

  1. (State Key Laboratory of Heavy Oil Processing, China Petroleum University (Beijing), Beijing 102249)
  • Received:2007-07-13 Revised:2007-09-12 Published:2008-02-28
  • Contact: ZHAO Suo-Qi

用FT-IR和1H NMR分析KOH无水乙醇溶液滴定前后的盐酸三乙胺无水乙醇溶液, 发现(C2H5)3NHCl中的H具有显著的质子酸性, 且在滴定过程中有KCl生成, 滴定后的1H NMR谱中δ 7.3处的谱峰完全消失. 将合成的(C2H5)3NHCl/AlCl3离子液体脱水, 在超临界条件下催化全氘代苯与丙烯的烷基化. 用同位素取代法, 研究了反应机理. 结果表明, 脱水后的离子液体仍然可以催化烷基化反应, 液体产物的GC-MS分析结果支持正碳离子机理. 对比反应前后离子液体的1H NMR谱图发现, 反应后离子液体中盐酸三乙胺中与N相连H的谱峰强度较反应前降低了80.12%, 可能是引发反应消耗了这部分H.

关键词: 离子液体, 烷基化反应, 超临界, 催化机理

It was proved that the H in (C2H5)3NHCl was proton acidic through the FT-IR and 1H NMR analysis of (C2H5)3NHCl solution titrated with KOH alcohol solution, during which KCl was formed and after which the signal of H at δ 7.3 in the 1H NMR spectrum disappeared completely. When the dewatered (C2H5)3NHCl/AlCl3 ionic liquid was used as a catalyst, the alkylation catalytic mechanism under a super critical conditions was studied using an isotope exchange method in this paper. The results showed that the dewatered ionic liquid could still catalyze the alkylation, and the carbonium mechanism was established through the GC-MS analysis of the reaction liquid product. It was found that the strength of H linked to N was reduced by 80.12% comparing the 1H NMR spectrum before and after the reaction, so the H initiating the reaction was the H linked to N in the (C2H5)3NHCl.

Key words: ionic liquid, alkylation, super critical, catalytic mechanism