化学学报 ›› 2017, Vol. 75 ›› Issue (6): 583-593.DOI: 10.6023/A17010021 上一篇    下一篇

所属专题: 铁环境化学

综述

微生物和含铁矿物之间的电子交换

邱轩a, 石良a,b   

  1. a 中国地质大学(武汉)生物地质与环境地质国家重点实验室 武汉 430074;
    b 中国地质大学(武汉)环境学院生物科学与技术系 武汉 430074
  • 投稿日期:2017-01-13 发布日期:2017-02-23
  • 通讯作者: 石良 E-mail:liang.shi@cug.edu.cn
  • 基金资助:

    项目受国家自然科学基金(Nos.41502317,41630318)和生物地质与环境地质国家重点实验室开放基金(No.GBL21503)资助.

Electrical Interplay between Microorganisms and Iron-bearing Minerals

Qiu Xuana, Shi Lianga,b   

  1. a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074;
    b Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074
  • Received:2017-01-13 Published:2017-02-23
  • Contact: 10.6023/A17010021 E-mail:liang.shi@cug.edu.cn
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 41502317 & 41630318) and the Open Fund of the State Key Laboratory of Environmental Geology and Biogeology (No. GBL21503).

含铁矿物常见于土壤中和地表下.在那里,它们以多种形式支撑微生物的生长和代谢,如作为微生物厌氧呼吸的电子受体、微生物自养生长的电子供体和能量来源、微生物细胞之间的电子导体和电子储存介质.微生物细胞膜套的物理化学性质决定其既不具有矿物渗透性,也不具备导电性.因此,微生物需要进化出特定的机制同胞外矿物交换电子(即胞外电子传导).微生物胞外电子传导与常见的,用于有氧呼吸的微生物细胞电子传递链有着诸多本质区别.本文中,我们概述了微生物与胞外含铁矿物之间电子传导的分子机理,以及相关的微生物在生物修复污染物、生产新型纳米材料、生物采矿和生物能源中的应用.

关键词: 胞外电子传导, 微生物, 矿物, 铁, 机制

Iron-bearing minerals are widespread in soil and subsurface environment where they support microbial growth and metabolisms by serving as the terminal electron acceptors for microbial anaerobic respiration; the electron donors and energy sources for microbial autotrophic growth; the conductors for mediating electron transfer between microbial cells and the electron storage materials. Because microbial cell envelope is neither permeable to iron-bearing minerals nor electrical conductive, microorganisms have evolved capabilities to exchange electrons between the microbial cytoplasmic membrane and the minerals external to the microbial cells (i.e., microbial extracellular electron transfer). Microbial extracellular electron transfer differs fundamentally from the microbial electron transport chain for aerobic respiration. In this review, we discussed the molecular underpinnings of microbial extracellular electron transfer with iron-bearing minerals and applications of the related microorganisms in remediation of environmental contaminants, production of novel nano-materials, biomining and bioenergy production.

Key words: extracellular electron transfer, microorganism, mineral, iron, mechanism