化学学报 ›› 2019, Vol. 77 ›› Issue (12): 1239-1249.DOI: 10.6023/A19080305 上一篇 下一篇
所属专题: 分子探针、纳米生物学与生命分析化学
综述
熊麟, 凡勇, 张凡
投稿日期:
2019-08-16
发布日期:
2019-09-18
通讯作者:
张凡
E-mail:zhang_fan@fudan.edu.cn
作者简介:
熊麟,博士后,2004年获得上海交通大学工学学士学位,2007年获得上海硅酸盐研究所材料物理与化学专业硕士学位,2017年获得澳大利亚阿德莱德大学纳米材料与纳米医学专业博士学位.2017年9月加入复旦大学化学系,主要研究领域为纳米材料的设计与合成,及其在药物递送和生物传感中的应用;凡勇,复旦大学化学系青年研究员,2009年获得西安交通大学理学学士学位,2015年获得清华大学物理系理学博士学位,2015~2018年复旦大学化学系博士后,2019年1月加入复旦大学化学系,主要研究领域包括功能性荧光纳米材料、荧光介观材料的设计与合成及其在医学成像、疾病诊断和治疗中的应用;张凡,复旦大学化学系教授,博士生导师,国家杰出青年基金获得者,教育部青年长江学者,中组部青年拔尖人才.2008年获得复旦大学化学系理学博士学位,2008~2010年美国加州大学圣芭芭拉分校化学与生物化学系博士后.2010年8月加入复旦大学化学系,主要研究领域包括生物纳米技术及生物分析、药物存储与释放,体内与体外生物成像等.
基金资助:
Xiong Lin, Fan Yong, Zhang Fan
Received:
2019-08-16
Published:
2019-09-18
Supported by:
文章分享
稀土纳米晶具有丰富的激发和发射波长,良好的化学和光稳定性、大Stokes位移等特点.近年来,稀土纳米晶在生物活体成像与传感领域的应用研究取得了迅速进展.通过纳米尺度的材料设计与合成,可以对稀土纳米晶的荧光效率、波长、寿命等光学性质,以及生物相容性、靶向性、响应性等生化性质进行精细调控,使其更好地适应于活体深组织的成像与分析.先概述活体荧光成像的技术特点与要求,然后介绍稀土纳米晶的一般组成、光学性质和荧光机理,随后详细讨论对稀土纳米晶光学和生化性质进行调控的方法,着重展示这些材料的设计和修饰在生物成像与传感领域的一些最新应用.通过总结最近的研究成果,期望能够为下一步的研究提供一些参考思路,以推进基于稀土纳米晶的生物成像与传感技术的临床转化和应用.
熊麟, 凡勇, 张凡. 稀土纳米晶用于近红外区活体成像和传感研究进展[J]. 化学学报, 2019, 77(12): 1239-1249.
Xiong Lin, Fan Yong, Zhang Fan. Research Progress on Rare Earth Nanocrystals for In Vivo Imaging and Sensing in Near Infrared Region[J]. Acta Chimica Sinica, 2019, 77(12): 1239-1249.
[1] Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. Nat. Mater. 2015, 15, 235. [2] Hou, J.; Li, K.; Qin, C.; Yu, X. Chin. J. Org. Chem. 2018, 38, 612. (后际挺, 李坤, 覃彩芹, 余孝其, 有机化学, 2018, 38, 612.) [3] Vijayaraghavan, P.; Liu, C.-H.; Vankayala, R.; Chiang, C.-S.; Hwang, K. C. Adv. Mater. 2014, 26, 6689. [4] Zhang, Y.; Wu, M.; Wu, M.; Guo, L.; Cao, L.; Wu, H.; Zhang, X. Acta Chim. Sinica 2018, 76, 709. (张燕燕, 武明豪, 武明杰, 国林沛, 曹琳, 吴虹仪, 张雪宁, 化学学报, 2018, 76, 709.) [5] Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; Qu, S.; Zbořil, R.; Rogach, A. L. Adv. Mater. 2018, 30, 1705913. [6] Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8943. [7] Li, C.; Zhang, Y.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. Biomaterials 2014, 35, 393. [8] Xu, Y.; Zhao, Y.; Zhang, Y.; Cui, Z.; Wang, L.; Fan, C.; Gao, J.; Sun, Y. Acta Chim. Sinica 2018, 76, 393. (徐毅, 赵彦, 张叶俊, 崔之芬, 王丽华, 樊春海, 高基民, 孙艳红, 化学学报, 2018, 76, 393.) [9] Hong, G.; Zou, Y.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y.; Wu, J. Z.; Yuan, J.; Zhang, B.; Tao, Z.; Fukunaga, C.; Dai, H. Nat. Commun. 2014, 5, 4206. [10] Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Nat. Commun. 2013, 4, 2199. [11] Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Chem. Rev. 2014, 114, 5161. [12] Bünzli, J.-C. G. Chem. Rev. 2010, 110, 2729. [13] Gai, S.; Li, C.; Yang, P.; Lin, J. Chem. Rev. 2013, 114, 2343. [14] Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L.-D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Chem. Rev. 2015, 115, 10725. [15] Dang, X.; Gu, L.; Qi, J.; Correa, S.; Zhang, G.; Belcher, A. M.; Hammond, P. T. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5179. [16] Li, X.; Zhang, F.; Zhao, D. Chem. Soc. Rev. 2015, 44, 1346. [17] Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Coord. Chem. Rev. 2019, 381, 104. [18] Ma, P. a.; Xiao, H.; Li, X.; Li, C.; Dai, Y.; Cheng, Z.; Jing, X.; Lin, J. Adv. Mater. 2013, 25, 4898. [19] Dai, Y.; Xiao, H.; Liu, J.; Yuan, Q.; Ma, P. A.; Yang, D.; Li, C.; Cheng, Z.; Hou, Z.; Yang, P.; Lin, J. J. Am. Chem. Soc. 2013, 135, 18920. [20] Zhou, L.; Wang, R.; Yao, C.; Li, X.; Wang, C.; Zhang, X.; Xu, C.; Zeng, A.; Zhao, D.; Zhang, F. Nat. Commun. 2015, 6, 6938. [21] Wang, R.; Zhang, F. J. Mater. Chem. B 2014, 2, 2422. [22] Li, X.; Shen, D.; Yang, J.; Yao, C.; Che, R.; Zhang, F.; Zhao, D. Chem. Mater. 2013, 25, 106. [23] Liu, L.; Li, X.; Fan, Y.; Wang, C.; El-Toni, A. M.; Alhoshan, M. S.; Zhao, D.; Zhang, F. Chem. Mater. 2019, 31, 5608. [24] Fan, Y.; Liu, L.; Zhang, F. Nano Today 2019, 25, 68. [25] Wang, F.; Liu, X. J. Am. Chem. Soc. 2008, 130, 5642. [26] Zhao, J.; Jin, D.; Schartner, E. P.; Lu, Y.; Liu, Y.; Zvyagin, A. V.; Zhang, L.; Dawes, J. M.; Xi, P.; Piper, J. A.; Goldys, E. M.; Monro, T. M. Nat. Nanotechnol. 2013, 8, 729. [27] Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Nat. Mater. 2011, 10, 968. [28] Garfield, D. J.; Borys, N. J.; Hamed, S. M.; Torquato, N. A.; Tajon, C. A.; Tian, B.; Shevitski, B.; Barnard, E. S.; Suh, Y. D.; Aloni, S.; Neaton, J. B.; Chan, E. M.; Cohen, B. E.; Schuck, P. J. Nat. Photonics 2018, 12, 402. [29] Wei, W.; Chen, G.; Baev, A.; He, G. S.; Shao, W.; Damasco, J.; Prasad, P. N. J. Am. Chem. Soc. 2016, 138, 15130. [30] Schietinger, S.; Aichele, T.; Wang, H.-Q.; Nann, T.; Benson, O. Nano Lett. 2010, 10, 134. [31] Xu, W.; Lee, T. K.; Moon, B. S.; Song, H. W.; Chen, X.; Chun, B.; Kim, Y. J.; Kwak, S. K.; Chen, P.; Kim, D. H. Adv. Opt. Mater. 2018, 6, 1701119. [32] Huang, B.; Sun, M.; Dougherty, A. W.; Dong, H.; Xu, Y.-J.; Sun, L.-D.; Yan, C.-H. Nanoscale 2017, 9, 18490. [33] Zou, W.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Nat. Photonics 2012, 6, 560. [34] Wang, Y.-F.; Liu, G.-Y.; Sun, L.-D.; Xiao, J.-W.; Zhou, J.-C.; Yan, C.-H. ACS Nano 2013, 7, 7200. [35] Xie, X.; Gao, N.; Deng, R.; Sun, Q.; Xu, Q.-H.; Liu, X. J. Am. Chem. Soc. 2013, 135, 12608. [36] Li, X.; Wang, R.; Zhang, F.; Zhou, L.; Shen, D.; Yao, C.; Zhao, D. Sci. Rep. 2013, 3, 3536. [37] Shen, J.; Chen, G.; Vu, A.-M.; Fan, W.; Bilsel, O. S.; Chang, C.-C.; Han, G. Adv. Opt. Mater. 2013, 1, 644. [38] Zhong, Y.; Tian, G.; Gu, Z.; Yang, Y.; Gu, L.; Zhao, Y.; Ma, Y.; Yao, J. Adv. Mater. 2014, 26, 2831. [39] Wang, D.; Xue, B.; Kong, X.; Tu, L.; Liu, X.; Zhang, Y.; Chang, Y.; Luo, Y.; Zhao, H.; Zhang, H. Nanoscale 2015, 7, 190. [40] Cheng, X.; Pan, Y.; Yuan, Z.; Wang, X.; Su, W.; Yin, L.; Xie, X.; Huang, L. Adv. Funct. Mater. 2018, 28, 1800208. [41] Liu, L.; Wang, S.; Zhao, B.; Pei, P.; Fan, Y.; Li, X.; Zhang, F. Angew. Chem., Int. Ed. 2018, 57, 7518. [42] Chen, Q.; Xie, X.; Huang, B.; Liang, L.; Han, S.; Yi, Z.; Wang, Y.; Li, Y.; Fan, D.; Huang, L.; Liu, X. Angew. Chem., Int. Ed. 2017, 56, 7605. [43] Wang, X.; Yakovliev, A.; Ohulchanskyy, T. Y.; Wu, L.; Zeng, S.; Han, X.; Qu, J.; Chen, G. Adv. Opt. Mater. 2018, 6, 1800690. [44] Wang, X.; Valiev, R. R.; Ohulchanskyy, T. Y.; Ågren, H.; Yang, C.; Chen, G. Chem. Soc. Rev. 2017, 46, 4150. [45] Chen, G.; Damasco, J.; Qiu, H.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C.; Ågren, H.; Prasad, P. N. Nano Lett. 2015, 15, 7400. [46] Shao, W.; Chen, G.; Kuzmin, A.; Kutscher, H. L.; Pliss, A.; Ohulchanskyy, T. Y.; Prasad, P. N. J. Am. Chem. Soc. 2016, 138, 16192. [47] Liang, L.; Qin, X.; Zheng, K.; Liu, X. Acc. Chem. Res. 2018, 52, 228. [48] Tu, L.; Liu, X.; Wu, F.; Zhang, H. Chem. Soc. Rev. 2015, 44, 1331. [49] Haase, M.; Schäfer, H. Angew. Chem., Int. Ed. 2011, 50, 5808. [50] Liu, X.; Kong, X.; Zhang, Y.; Tu, L.; Wang, Y.; Zeng, Q.; Li, C.; Shi, Z.; Zhang, H. Chem. Commun. 2011, 47, 11957. [51] Liang, L.; Xie, X.; Loong, D. T. B.; All, A. H.; Huang, L.; Liu, X. Chem.-Eur. J. 2016, 22, 10801. [52] Arboleda, C.; He, S.; Stubelius, A.; Johnson, N. J. J.; Almutairi, A. Chem. Mater. 2019, 31, 3103. [53] Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. ACS Nano 2010, 4, 3163. [54] Shen, B.; Cheng, S.; Gu, Y.; Ni, D.; Gao, Y.; Su, Q.; Feng, W.; Li, F. Nanoscale 2017, 9, 1964. [55] Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E.; Schuck, P. J. Nat. Nanotechnol. 2014, 9, 300. [56] Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch-Genger, U.; Haase, M. Angew. Chem. Int. Ed. 2018, 57, 8765. [57] Tian, B.; Fernandez-Bravo, A.; Najafiaghdam, H.; Torquato, N. A.; Altoe, M. V. P.; Teitelboim, A.; Tajon, C. A.; Tian, Y.; Borys, N. J.; Barnard, E. S.; Anwar, M.; Chan, E. M.; Schuck, P. J.; Cohen, B. E. Nat. Commun. 2018, 9, 3082. [58] Johnson, N. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H.; Almutairi, A. J. Am. Chem. Soc. 2017, 139, 3275. [59] Kuang, Y.; Xu, J.; Wang, C.; Li, T.; Gai, S.; He, F.; Yang, P.; Lin, J. Chem. Mater. 2019, 31, 7898. [60] Li, X.; Guo, Z.; Zhao, T.; Lu, Y.; Zhou, L.; Zhao, D.; Zhang, F. Angew. Chem. Int. Ed. 2016, 55, 2464. [61] Zhong, Y.; Ma, Z.; Zhu, S.; Yue, J.; Zhang, M.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y.; Wang, W.; Huang, N. F.; Luo, J.; Hu, Z.; Dai, H. Nat. Commun. 2017, 8, 737. [62] Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Ågren, H.; Prasad, P. N.; Han, G. ACS Nano 2012, 6, 8280. [63] Villa, I.; Vedda, A.; Cantarelli, I. X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U.; Jacinto, C.; Carrasco, E.; Rodríguez, F. S.; Juarranz, Á.; del Rosal, B.; Ortgies, D. H.; Gonzalez, P. H.; Solé, J. G.; García, D. J. Nano Research 2014, 8, 649. [64] Diao, S.; Hong, G.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. Nano Research 2015, 8, 3027. [65] Xie, X.; Li, Z.; Zhang, Y.; Guo, S.; Pendharkar, A. I.; Lu, M.; Huang, L.; Huang, W.; Han, G. Small 2017, 13, 1602843. [66] Liu, B.; Li, C.; Yang, P.; Hou, Z.; Lin, J. Adv. Mater. 2017, 29, 1605434. [67] Singh, S.; Smith, R. G.; Van Uitert, L. G. Phys. Rev. B 1974, 10, 2566. [68] Wang, R.; Li, X.; Zhou, L.; Zhang, F. Angew. Chem. Int. Ed. 2014, 53, 12086. [69] Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J.; Cohen, B. E.; Chan, E. M. ACS Nano 2016, 10, 8423. [70] Zhang, H.; Fan, Y.; Pei, P.; Sun, C.; Lu, L.; Zhang, F. Angew. Chem. Int. Ed. 2019, 58, 10153. [71] Lu, Y.; Zhao, J.; Zhang, R.; Liu, Y.; Liu, D.; Goldys, E. M.; Yang, X.; Xi, P.; Sunna, A.; Lu, J.; Shi, Y.; Leif, R. C.; Huo, Y.; Shen, J.; Piper, J. A.; Robinson, J. P.; Jin, D. Nat. Photonics 2013, 8, 32. [72] Fan, Y.; Wang, P.; Lu, Y.; Wang, R.; Zhou, L.; Zheng, X.; Li, X.; Piper, J. A.; Zhang, F. Nat. Nanotechnol. 2018, 13, 941. [73] Yao, C.; Wei, C.; Huang, Z.; Lu, Y.; El-Toni, A. M.; Ju, D.; Zhang, X.; Wang, W.; Zhang, F. ACS Appl. Mater. Interfaces 2016, 8, 6935. [74] Wilhelm, S.; Kaiser, M.; Wurth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Nanoscale 2015, 7, 1403. [75] Muhr, V.; Wilhelm, S.; Hirsch, T.; Wolfbeis, O. S. Acc. Chem. Res. 2014, 47, 3481. [76] Deng, Z.; Li, X.; Xue, Z.; Jiang, M.; Li, Y.; Zeng, S.; Liu, H. Nanoscale 2018, 10, 9393. [77] Wang, P.; Fan, Y.; Lu, L.; Liu, L.; Fan, L.; Zhao, M.; Xie, Y.; Xu, C.; Zhang, F. Nat. Commun. 2018, 9, 2898. [78] Zhao, M.; Li, B.; Wang, P.; Lu, L.; Zhang, Z.; Liu, L.; Wang, S.; Li, D.; Wang, R.; Zhang, F. Adv. Mater. 2018, e1804982. [79] Zhao, M.; Wang, R.; Li, B.; Fan, Y.; Wu, Y.; Zhu, X.; Zhang, F. Angew. Chem. Int. Ed. 2019, 58, 2050. [80] Wang, R.; Zhou, L.; Wang, W.; Li, X.; Zhang, F. Nat. Commun. 2017, 8, 14702. [81] Wang, S.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D.; Zhang, F. Nano Lett. 2019, 19, 2418. [82] Peng, J.; Samanta, A.; Zeng, X.; Han, S.; Wang, L.; Su, D.; Loong, D. T. B.; Kang, N.-Y.; Park, S.-J.; All, A. H.; Jiang, W.; Yuan, L.; Liu, X.; Chang, Y.-T. Angew. Chem. Int. Ed. 2017, 56, 4165. [83] Yang, D.; Ma, P. A.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Chem. Soc. Rev. 2015, 44, 1416. [84] Hou, Z.; Zhang, Y.; Deng, K.; Chen, Y.; Li, X.; Deng, X.; Cheng, Z.; Lian, H.; Li, C.; Lin, J. ACS Nano 2015, 9, 2584. [85] Oliveira, H.; Bednarkiewicz, A.; Falk, A.; Frohlich, E.; Lisjak, D.; Prina-Mello, A.; Resch, S.; Schimpel, C.; Vrcek, I. V.; Wysokinska, E.; Gorris, H. H. Adv. Healthc. Mater. 2019, 8, e1801233. [86] Gnach, A.; Lipinski, T.; Bednarkiewicz, A.; Rybka, J.; Capobianco, J. A. Chem. Soc. Rev. 2015, 44, 1561. |
[1] | 王一诺, 邵世洋, 王利祥. 窄谱带多重共振有机高分子荧光材料研究进展★[J]. 化学学报, 2023, 81(9): 1202-1214. |
[2] | 王海朋, 蔡文生, 邵学广. 抗冻剂抗冻机制的近红外光谱与分子模拟研究★[J]. 化学学报, 2023, 81(9): 1167-1174. |
[3] | 葛凤洁, 张开志, 曹清鹏, 徐慧, 周涛, 张文浩, 班鑫鑫, 张晓波, 李娜, 朱鹏. 柔性芴基嵌段型延迟荧光二聚体的设计、合成及电致发光性能[J]. 化学学报, 2023, 81(9): 1157-1166. |
[4] | 车飞达, 赵晓茗, 张馨, 丁琪, 王昕, 李平, 唐波. 抑郁症相关活性分子的荧光成像★[J]. 化学学报, 2023, 81(9): 1255-1264. |
[5] | 王晓, 王星文, 肖乐辉. 单分子荧光成像研究单颗粒纳米催化机制[J]. 化学学报, 2023, 81(8): 1002-1014. |
[6] | 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英. 喹啉基粘度荧光探针的合成及其检测应用[J]. 化学学报, 2023, 81(8): 905-911. |
[7] | 郑文山, 高冠斌, 邓浩, 孙涛垒. Ag2Se@Ag2S核壳量子点的室温合成及其近红外荧光性能优化[J]. 化学学报, 2023, 81(7): 763-770. |
[8] | 刘振宇, 饶俊峰, 祝守加, 王兵洋, 余帆, 冯全友, 解令海. 溶液加工型自主体热活化延迟荧光材料的研究进展[J]. 化学学报, 2023, 81(7): 820-835. |
[9] | 王银凤, 李猛, 陈传峰. 基于手性三蝶烯的红光热激活延迟荧光聚合物及其有机发光二极管研究★[J]. 化学学报, 2023, 81(6): 588-594. |
[10] | 李兰英, 陶晴, 闻艳丽, 王乐乐, 郭瑞妍, 刘刚, 左小磊. 多聚腺嘌呤DNA探针及其生物传感应用★[J]. 化学学报, 2023, 81(6): 681-690. |
[11] | 吕鑫, 吴仪, 张勃然, 郭炜. 过氧化氢激活型近红外氟硼二吡咯光敏剂的设计、合成及光动力治疗研究[J]. 化学学报, 2023, 81(4): 359-370. |
[12] | 梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏. 一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+及其应用研究[J]. 化学学报, 2023, 81(4): 371-380. |
[13] | 朱子煜, 梁阿新, 浩天瑞霖, 唐珊珊, 刘淼, 解炳腾, 罗爱芹. 生物传感器在新冠病毒检测中的应用[J]. 化学学报, 2023, 81(3): 253-263. |
[14] | 张少秦, 李美清, 周中军, 曲泽星. 多共振热激活延迟荧光过程的理论研究[J]. 化学学报, 2023, 81(2): 124-130. |
[15] | 黄艳琴, 栗丽君, 杨书培, 张瑞, 刘兴奋, 范曲立, 黄维. HA-AuNPs/FDF用于透明质酸酶的高灵敏检测、肿瘤靶向细胞荧光成像和光疗[J]. 化学学报, 2023, 81(12): 1687-1694. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||