综述
昌红, 庄诗怡, 金伟伟*
投稿日期:2025-12-10
作者简介:昌红,2019年本科毕业于烟台大学,获得学士学位。目前在中国计量大学攻读硕士学位。研究方向为电化学促进的杂原子-杂原子偶联反应。庄诗怡,分别于2017年、2019年和2023年在华中师范大学获得学士、硕士和博士学位。2023年~至今,中国计量大学讲师。主要研究领域为有机电合成。金伟伟,2006年和2009年分别在华中师范大学获得学士和硕士学位。2012年在中科院大连化学物理研究所获得博士学位。2012~2015年在香港理工大学从事博士后研究。2016~2022年,新疆大学副教授。2023年~至今,中国计量大学教授、硕士研究生导师。主持包括国家高层次人才计划青年项目、国家自然科学基金青年基金和地区基金在内的科研项目多项,在Angew. Chem. Int. Ed.; Adv. Sci.; Chem. Eng. J.; Biosens. Bioelectron.; Green Chem.; Chin. J. Chem.; Org. Lett.; Green Synth. Catal.等期刊发表SCI收录论文70多篇,授权中国专利8件,曾获2020年新疆维吾尔自治区自然科学奖一等奖。主要研究领域为药物活性分子的绿色有机合成和水凝胶化学。
基金资助:Chang Hong, Zhuang Shiyi, Jin Weiwei*
Received:2025-12-10
Contact:
*E-mail: wwjin0722@cjlu.edn.cn.
Supported by:文章分享
含杂原子-杂原子键(X-X键)的化合物在天然产物、生物化工和材料科学等领域具有广泛的应用价值。鉴于X-X键在调控分子生物活性方面所展现出的独特作用,开发高效构建X-X键的有效策略已成为有机合成领域一个活跃的研究方向。近年来,有机电合成因其环境友好、原子经济性高以及符合可持续发展理念等优势,逐渐成为一种备受青睐的绿色合成方法。本文围绕电化学交叉脱氢偶联策略,以几种常见杂原子为例,系统综述了一系列杂原子-杂原子键的电化学构建方法,在概括反应机理的基础上,进一步对该领域当前面临的挑战与未来发展方向进行了展望。
昌红, 庄诗怡, 金伟伟. 电化学促进的杂原子-杂原子脱氢偶联反应研究进展[J]. 化学学报, doi: 10.6023/A25120403.
Chang Hong, Zhuang Shiyi, Jin Weiwei. Recent Advances in Electrochemical Dehydrogenative Coupling for Heteroatom-Heteroatom Formation[J]. Acta Chimica Sinica, doi: 10.6023/A25120403.
| [1] Li M.; Hong J.; Xiao W.; Yang Y.; Qiu D.; Mo F. ChemSusChem2020, 13, 1661. [2] Duan C.; Zhang J.; Xiang J.; Yang X.; Gao, X. Acta Chim. Sinica2022, 80, 29 (in Chinese). (段超, 张建伟, 向焌钧, 杨笑迪, 高希珂, 化学学报, 2022, 80, 29.) [3] Varala R.; Kamsali M. M.A.; Bollikolla, H. B.; Mahurkar, S. S.; Hussein, M.; Alam, M. M.Chem. Biodivers. 2025, e01527. [4] Du Z.; Qi Q.; Gao W.; Ma L.; Liu Z.; Wang R.; Chen J. Chem. Rec.2022, 22, e202100178. [5] Dong K.; Liu Q.; Wu, L. Z. Acta Chim. Sinica2020, 78, 299 (in Chinese). (董奎, 刘强, 吴骊珠, 化学学报, 2020, 78, 299.) [6] Waldman A. J.; Ng T. L.; Wang P.; Balskus, E. P. Chem. Rev.2017, 117, 5784. [7] Han Y.; Cui, X. Chin. J. Org. Chem.2023, 43, 1201 (in Chinese). (韩宇轩, 崔秀灵, 有机化学, 2023, 43, 1201.) [8] Kingston C.; Palkowitz M. D.; Takahira Y.; Vantourout J. C.; Peters B. K.; Kawamata Y.; Baran, P. S. Acc. Chem. Res.2019, 53, 72. [9] Reziguli Y.; Kadierya A.; Luo S.; Abulikemu, A. R. Acta Chim. Sinica2024, 82, 843 (in Chinese). (热孜古丽•玉努斯, 卡迪尔亚•阿布都外力, 罗时玮, 阿布都热西提•阿布力克木, 化学学报, 2024, 82, 843.) [10] Wang Z.; Ma C.; Fang P.; Xu H.; Mei, T. Acta Chim. Sinica2022, 80, 1115 (in Chinese). (王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.) [11] Faraday, M. Ann. Phys. 1834, 109, 301. [12] Yang Z.; Zhang J.; Hu L.; Li L.; Liu K.; Yang T.; Zhou, C. J. Org. Chem.2020, 85, 3358. [13] Tang S.; Liu Y.; Lei A. Chem2018, 4, 27. [14] Robertson J. C.; Coote M. L.; Bissember, A. C. Nat. Revs. Chem.2019, 3, 290. [15] Wang Y.; Qian P.; Su J. H.; Li Y.; Bi M.; Zha Z.; Wang Z. Green Chem.2017, 19, 4769. [16] Deng L.; Wang Y.; Mei H.; Pan Y.; Han, J. J. Org. Chem.2019, 84, 949. [17] Nicewicz D.; Roth H.; Romero N. Synlett2015, 27, 714. [18] Ye Z.; Zhang X.; Ma W.; Zhang F. Green Chem.2023, 25, 2524. [19] Biremond T.; Riomet M.; Jubault P.; Poisson T. Chem. Rec.2023, 23, e202300172. [20] Taniguchi, T. Chem. Soc. Rev. 2021, 50, 8995. [21] Qi J.; Zhang F.; Jin J.; Zhao Q.; Li B.; Liu L.; Wang, Y. Angew. Chem. Int. Ed.2020, 59, 12876. [22] Poater J.; Solà M.; Viñas C.; Teixidor, F. Angew. Chem. Int. Ed.2014, 53, 12191. [23] Mukherjee S.; Thilagar P. Chem. Commun.2016, 52, 1070. [24] Núñez R.; Tarrés M.; Ferrer-Ugalde A.; de Biani F. F.; Teixidor F. Chem. Rev.2016, 116, 14307. [25] Li X.; Yan H.; Zhao, Q. Chem. Eur. J.2015, 22, 1888. [26] Fisher S. P.; Tomich A. W.; Lovera S. O.; Kleinsasser J. F.; Guo J.; Asay M. J.; Nelson H. M.; Lavallo V. Chem. Rev.2019, 119, 8262. [27] Armstrong A. F.; Valliant J. F.Dalton Trans. 2007, 4240. [28] Ge Y.; Qiu Z.; Xie, Z. Acta Chim. Sinica2022, 80, 432 (in Chinese). (葛懿修, 邱早早, 谢作伟, 化学学报, 2022, 80, 432.) [29] Yang L.; Bongsuiru Jei B.; Scheremetjew A.; Kuniyil R.; Ackermann, L. Angew. Chem. Int. Ed.2021, 60, 1482. [30] Chen M.; Zhao D.; Xu J.; Li C.; Lu C.; Yan, H. Angew. Chem. Int. Ed.2021, 60, 7838. [31] Rosen B. R.; Werner E. W.; O’Brien A. G.; Baran, P. S. J. Am. Chem. Soc.2014, 136, 5571. [32] Gieshoff T.; Schollmeyer D.; Waldvogel, S. R. Angew. Chem. Int. Ed.2016, 55, 9437. [33] Kehl A.; Gieshoff T.; Schollmeyer D.; Waldvogel, S. R. Chem. Eur. J.2018, 24, 590. [34] Ye Z.; Wang F.; Li Y.; Zhang F. Green Chem.2018, 20, 5271. [35] Xu P.; Xu H. ChemElectroChem.2019, 6, 4177. [36] Li Y.; Ye Z.; Chen N.; Chen Z.; Zhang F. Green Chem.2019, 21, 4035. [37] Feng E.; Hou Z.; Xu, H. Chin. J. Org. Chem.2019, 39, 1424 (in Chinese). (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.) [38] Lv S.; Han X.; Wang J.; Zhou M.; Wu Y.; Ma L.; Niu L.; Gao W.; Zhou J.; Hu W.; Cui Y.; Chen, J. Angew. Chem. Int. Ed.2020, 59, 11583. [39] Zhao J.; Ding L.; Wang P.; Liu Y.; Huang M.; Zhou X.; Lu, M. Adv. Synth. Catal.2020, 362, 5036. [40] Wang F.; Gerken J. B.; Bates D. M.; Kim Y. J.; Stahl, S. S. J. Am. Chem. Soc.2020, 142, 12349. [41] Wang Y.; You S.; Ruan M.; Wang F.; Ma C.; Lu C.; Yang G.; Chen Z.; Gao, M. Eur. J. Org. Chem.2021, 2021, 3289. [42] Titenkova K.; Shuvaev A. D.; Teslenko F. E.; Zhilin E. S.; Fershtat, L. L. Green Chem.2023, 25, 6686. [43] Gao A.; Chen K.; Ma F.; Li A.; Li, H. Eur J Org Chem2024, 27, e202400854. [44] Li, S Y.; An Y.; Wang, L L.; Li X.; Tan Y.; Wen B.; Li, T S.; Chen, X, Q. Asian J. Org. Chem.2026, 15, e70271. [45] Tang W.; Zhang X. Chem. Rev.2003, 103, 3029. [46] Quin L. D.A Guide to Organophosphorus Chemistry; Wiley Interscience: New York, 2000. [47] Wang Y.; Qian P.; Su J. H.; Li Y.; Bi M.; Zha Z.; Wang Z. Green. Chem.2017, 19, 4769. [48] Dong X.; Wang R.; Jin W.; Liu C. Org. Lett.2020, 22, 3062. [49] Deng Y.; You S.; Ruan M.; Wang Y.; Chen Z.; Yang G.; Gao, M. Adv. Synth. Catal.2021, 363, 464. [50] Wang R.; Dong X.; Zhang Y.; Wang B.; Xia Y.; Abdukader A.; Xue F.; Jin W.; Liu, C. Chem. Eur. J.2021, 27, 14931. [51] Yuan Y.; Liu X.; Hu J.; Wang P.; Wang S.; Alhumade H.; Lei A. Chem. Sci.2022, 13, 3002. [52] Li X.; Huang J.; Xu L.; Liu J.; Wei, Y. Adv. Synth. Catal.2023, 365, 4647. [53] Mdluli V.; Lehnherr D.; Lam Y. H.; Chaudhry M. T.; Newman J. A.; DaSilva J. O.; Regalado, E. L. Chem. Sci.2024, 15, 5980. [54] Zhang W.; Jin D.; Hu Y.; Yin K.; Zou Q.; Tang L.; Qian, P. J. Org. Chem.2024, 89, 6106. [55] Li S.; Li X.; Askar D.; Mo X.; Obolda A.; Li X.; Gao J.; Cheng, B. J. Org. Chem.2025, 90, 8269. [56] Li Q.; Swaroop T. R.; Hou C.; Wang Z.; Pan Y.; Tang, H. Adv. Synth. Catal.2019, 361, 1761. [57] Li Y.; Yang Q.; Yang L.; Lei N.; Zheng K. Chem. Commun.2019, 55, 4981. [58] Wu Q. L.; Chen X. G.; Huo C. D.; Wang X. C.; Quan Z. J.New J. Chem. 2019, 43, 1531. [59] Guo S.; Li S.; Yan W.; Liang Z.; Fu Z.; Cai H. Green Chem.2020, 22, 7343. [60] Qing H.; Yu C.; Liu S.; Gao, M. Asian J. Org. Chem.2025, 14, e202500376. [61] Li C. Y.; Liu Y. C.; Li Y. X.; Reddy D. M.; Lee, C. F. Org. Lett.2019, 21, 7833. [62] Meng Z. Y.; Feng C. T.; Zhang L.; Yang Q.; Chen D. X.; Xu K. Org. Lett.2021, 23, 4214. [63] Huang L.; Meng F.; Guo W.; Dai X.; Lv Z.; Tang P.; Guo Y.; Cheng C.; Gao Z. Org. Lett.2025, 27, 12729. [64] Laudadio G.; Bartolomeu A. D. A.; Verwijlen L. M. H. M.; Cao Y.; de Oliveira K. T.; Noël, T. J. Am. Chem. Soc.2019, 141, 11832. [65] Laudadio G.; Straathof N. J. W.; Lanting M. D.; Knoops B.; Hessel V.; Noël T. Green Chem.2017, 19, 4061. [66] Park J. K.; Oh J.; Lee, S. Org. Chem. Front.2022, 9, 3407. [67] Zhang L.; Cheng X.; Zhou, Q. Chin. J. Chem.2022, 40, 1687. [68] Ma L.; Zhou H.; Xu M.; Hao P.; Kong X.; Duan H. Chem. Sci.2021, 12, 938. [69] Amri N.; Wirth, T. J. Org. Chem.2021, 86, 15961. [70] Cheng Z.; Gao X.; Yao L.; Wei Z.; Qin G.; Zhang Y.; Wang B.; Xia Y.; Abdukader A.; Xue F.; Jin W.; Liu, C. Eur. J. Org. Chem.2021, 2021, 3743. [71] Liang Y.; Shi S. H.; Jin R.; Qiu X.; Wei J.; Tan H.; Jiang X.; Shi X.; Song S.; Jiao N. Nat. Catal.2021, 4, 116. [72] Terent'ev A. O.; Mulina O. M.; Parshin V. D.; Kokorekin V. A.; Nikishin, G. I. Org. Biomol. Chem.2019, 17, 3482. [73] Ai C.; Shen H.; Song D.; Li Y.; Yi X.; Wang Z.; Ling F.; Zhong W. Green Chem.2019, 21, 5528. [74] Tian Z.; Gong Q.; Huang T.; Liu L.; Chen, T. J. Org. Chem.2021, 86, 15914. [75] Zhong Z.; Xu P.; Ma J.; Zhou A. Tetrahedron2021, 99, 132444. [76] Huang P.; Wang P.; Tang S.; Fu Z.; Lei, A. Angew. Chem. Int. Ed.2018, 57, 8115. [77] Yang Z.; Shi Y.; Zhan Z.; Zhang H.; Xing H.; Lu R.; Zhang Y.; Guan M.; Wu Y. ChemElectroChem2018, 5, 3619. [78] Mo Z. Y.; Swaroop T. R.; Tong W.; Zhang Y. Z.; Tang H. T.; Pan Y. M.; Sun H. B.; Chen, Z. F. Green Chem.2018, 20, 4428. [79] Zhang X.; Cui T.; Zhang Y.; Gu W.; Liu P.; Sun P.Adv. Synth. Catal. 2019, 361, 2014. [80] Breising V. M.; Gieshoff T.; Kehl A.; Kilian V.; Schollmeyer D.; Waldvogel, S. R. Org. Lett.2018, 20, 6785. [81] Sattler L. E.; Otten C. J.; Hilt, G. Chem. Eur. J.2020, 26, 3129. [82] Sun X.; Yang S.; Wang Z.; Liang S.; Tian H.; Yang S.; Liu Y.; Sun B.; Zeng C. ChemistrySelect2020, 5, 4637. [83] Zheng S.; Wang K.; Luo G. Green Chem.2021, 23, 582. [84] Wang D. Y.; Si Y.; Guo W.; Fu Y. Nat. Commun.2021, 12, 3220. [85] Zhang T.; Wang R.; Ma L.; Liu J.; Sun J.; Wang, B. Environ. Chem. Lett.2022, 20, 2765. [86] Zhou Z.; Gai L.; Xu L. W.; Guo Z.; Lu H. Chem. Sci.2023, 14, 10385. [87] Liang H.; Wang L.; Ji Y.; Wang H.; Zhang, B. Angew. Chem. Int. Ed.2021, 60, 1839. [88] Fu Z.; Xiao F.; Yin J.; Tong F.; Guo S.; Cai H. Green Chem.2024, 26, 5838. [89] Wei Z.; Chen Z.; Xue F.; Yue Y.; Wu S.; Zhang Y.; Wang B.; Xia Y.; Jin W.; Liu C. Green Chem.2024, 26, 10189. [90] Qiao K.; Li H.; Chen Z.; Zhu Y.; Jiang W.; Li F.; Shi L. J. Catal.2025, 447, 116133. [91] Zhang X.; Cheng F.; Guo J.; Zheng S.; Wang X.; Li S. Nat. Synth.2024, 3, 477. [92] Guo S.; Li S.; Zhang Z.; Yan W.; Cai H. Tetrahedron Lett.2020, 61, 151566. [93] Amri N.; Wirth T. Synlett2020, 31, 1894. |
| [1] | 史同同, 李佳, 殷一樊, 孙凯. 光化学驱动α-三氟甲基烯烃的多样性转化[J]. 化学学报, 2026, 84(1): 135-159. |
| [2] | 李国宝, 刘睿卿, 季云龙, 王盼. 水系有机液流电池正极储能材料研究进展★[J]. 化学学报, 2025, 83(8): 895-916. |
| [3] | 唐俊鸿, 周聪颖, 王成明. 氮杂环卡宾催化酰基肟生成亚胺自由基: 一种快速合成菲啶的方法[J]. 化学学报, 2025, 83(6): 557-562. |
| [4] | 周泉, 蒋佳怡, 罗年华, 黄家翩. 甲磺酰化反应的最新研究进展[J]. 化学学报, 2025, 83(3): 274-286. |
| [5] | 张蒙茜, 张玉莹, 秦家轩, 冯霄, 李雪艳, 畅通, 杨海英. 电聚合新型聚间苯二胺薄膜及H2/CO2分离性能研究[J]. 化学学报, 2025, 83(2): 132-138. |
| [6] | 熊雨平, 谢文林, 陈健强, 吴劼. 硫自由基阳离子在光化学反应中的产生与应用[J]. 化学学报, 2025, 83(12): 1592-1618. |
| [7] | 孟凡荣, 李国锋, 赵杰, 肖文精, 石德清, 陈加荣. 光催化氮自由基参与的乙烯基环丙烷加成/环化反应合成四氢吡啶★[J]. 化学学报, 2025, 83(12): 1472-1479. |
| [8] | 黄俊, 尹蓉, 曹婷婷. 基于自由基介导Formal Diels-Alder反应的复杂天然产物全合成[J]. 化学学报, 2025, 83(11): 1424-1434. |
| [9] | 文延萃, 朱丽君, 易荣楠, 沈超, 祝海涛, 王祖利, 何卫民. 无外加电解质条件下电化学促进喹喔啉-2(1H)-酮和苄氯的脱氯苄基化反应★[J]. 化学学报, 2025, 83(10): 1124-1128. |
| [10] | 董文锋, 王楠, 杨贺, 徐广庆, 汤文军. 聚合型膦配体在除草剂灵思科中的合成应用[J]. 化学学报, 2024, 82(9): 940-953. |
| [11] | 卡迪尔亚•阿布都外力, 热孜古丽•玉努斯, 李佳佳, 罗时玮, 阿布都热西提•阿布力克木. N-烷氧基酰胺无溶剂氧化脱氢N—N自偶联反应研究[J]. 化学学报, 2024, 82(7): 731-735. |
| [12] | 李康葵, 龙先扬, 黄岳, 祝诗发. 可见光介导炔烃的自由基1,2-官能团化反应新进展[J]. 化学学报, 2024, 82(6): 658-676. |
| [13] | 刘浩, 徐旭莉, 郭勇, 刘晓晖, 王艳芹. Ru/NiPOx高效电催化醛还原胺化反应的研究[J]. 化学学报, 2024, 82(5): 477-485. |
| [14] | 易敬霖, 陈茂. 三氟氯乙烯与甲基异丙烯基醚的光诱导共聚反应★[J]. 化学学报, 2024, 82(2): 126-131. |
| [15] | 李珊, 路俊欣, 刘杰, 蒋绿齐, 易文斌. 氟烷基亚磺酸钠盐电化学合成α-氟烷基酮[J]. 化学学报, 2024, 82(2): 110-114. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||