Acta Chimica Sinica ›› 2010, Vol. 68 ›› Issue (23): 2457-2462. Previous Articles     Next Articles

Full Papers

两种非蛋白氨基酸的新功能: 与丙二醛相互反应的机制

邓燕1,2,何农跃*,1,2,许利剑2,曾新1,李智洋1,马超1,傅娟2   

  1. (1东南大学生物电子学国家重点实验室 南京 210096)
    (2湖南工业大学绿色包装与生物纳米技术应用湖南省重点实验室 株洲 412008)
  • 投稿日期:2010-04-18 修回日期:2010-07-10 发布日期:2010-08-02
  • 通讯作者: 何农跃 E-mail:nyhejnn@yahoo.cn
  • 基金资助:

    国家自然科学基金项目;国家重点基础研究发展计划;国家重点基础研究发展计划;国家“863”重点项目;湖南省自然科学基金

New Function of Two Non-protein Amino Acids: Mechanism of Interaction with Malondialdehyde

Deng Yan1,2 He Nongyue*,1,2 Xu Lijian2 Zeng Xin1 Li Zhiyang1, Ma Chao1 Fu Juan2   

  1. (1 State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096)
    (2 Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412008)
  • Received:2010-04-18 Revised:2010-07-10 Published:2010-08-02

Malondialdehyde is a typical product of biomolecule oxidation, and it is also a major product of lipid peroxidation reactions. Tissue deterioration and aging have long been associated with the accumulation of such a compound which induces protein and DNA damage. Taurine (2-aminoethanesulfonic acid) is also involved in a number of crucial physiological processes, and GABA (γ-aminobutyric acid) is a important inhibitory neurotransmitter in nervous system, both of them are two important non-protein amino acids. The purpose of this study is to determine if taurine or GABA can trap MDA directly and thereby prevent advanced lipoxidation end products (ALEs) formation. Direct reaction between MDA and taurine or GABA was researched by using different analytical methods, such as high performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS). The results indicated that taurine or GABA reacted readily with MDA at supraphysiological conditions to form different products. Two nonfluorescent enamines with an absorption peak at 274~278 nm were obtained, and two lipofuscin-like fluorescent (Ex. 392~395 nm/Em. 456~364 nm) 1,4-dihydropyridine products were derived from reaction of equimolar of taurine+MDA or GABA+MDA using HPLC separation within 48 h. The reaction of taurine or GABA with MDA suggested a novel scavenging reactive carbonyl function of taurine or GABA in pathophysiological situations related to carbonyl stress related diseases.

Key words: taurine, GABA (γ-aminobutyric acid), malondialdehyde (MDA), carbonyl toxification, mechanism