Acta Chimica Sinica ›› 2013, Vol. 71 ›› Issue (05): 815-821.DOI: 10.6023/A13030234 Previous Articles     Next Articles

Article

负偏压下(Ni-Mo)/TiO2膜电极光电催化降解罗丹明B的性能和机理

李爱昌a, 李健飞b, 刘亚录a, 张建平a, 赵丽平a, 卢艳红a   

  1. a 廊坊师范学院化学与材料科学学院 河北廊坊 065000;
    b 石家庄学院 石家庄 050035
  • 投稿日期:2013-03-04 发布日期:2013-04-10
  • 通讯作者: 李爱昌,aichangli@hotmail.com; Tel.: 0316-2188370 E-mail:aichangli@hotmail.com
  • 基金资助:

    项目受河北省科技支撑计划项目(No. 11276732)和廊坊师范学院科学研究项目(No. LSZZ201202)资助.

Photoelectrocatalytic Properties and Reaction Mechanism of (Ni-Mo)/TiO2 Film Electrode for Degradation of Rhodamine B at Negative Bias

Li Aichanga, Li Jianfeib, Liu Yalua, Zhang Jianpinga, Zhao Lipinga, Lu Yanhonga   

  1. a Faculty of Chemistry and Material Science, Langfang Teachers College, Langfang 065000, China;
    b Shijiazhuang University, Shijiazhuang 050035, China
  • Received:2013-03-04 Published:2013-04-10
  • Supported by:

    Project supported by the Science and Technology Project of Hebei Province (No. 11276732) and the Scientific Research Program of Langfang Teachers College (No. LSZZ201202).

In the purpose of preparing highly efficient film photocatalyst and exploring rule of semiconductor photocatalytic and photoelectrocatalytic degradation of organic pollutants, (Ni-Mo)/TiO2 composite thin films were prepared by composite electroplating at a constant current. The depositing conditions of (Ni-Mo)/TiO2 film were as follows: suspension quantity of TiO2 in solution was 6.0 g/L; pH value in solution was 10.5; electrodepositing time and current density were 15 min and 95 mA/cm2, respectively. The surface morphology, phase structure, and spectral characteristics of the thin film were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrum and ultraviolet-visible diffuse reflectance spectroscopy (DRS), respectively. Its photoelectrocatalytic properties were evaluated with Rhodamine B as a model compound under the conditions of negative bias and visible light. Using electrochemical technique and adding active species scavenger to the solution, the mechanism of photoelectrocatalytic degradation for the film were explored. The results indicate that the (Ni-Mo)/TiO2 film consists of crystalline grains of TiO2 in the size range of 50~100 nm and the nano-crystalline of Ni-Mo in solid solution. The (Ni-Mo)/TiO2 film is photoelectrocatalytically more active than TiO2/ITO (indium tin oxide) film. Reacting 60 min under the negative bias of -0.4 V and visible light irradiation, the photoelectrocatalytic degradation rate of (Ni-Mo)/TiO2 film is 1.56 times as much as that of porous TiO2(Degussa P25)/ITO film. The improvement in photoelectrocatalytic degradation activity for the composite film could be mainly attributed to the catalysis of Ni-Mo in the composite film for the reaction of excited electrons with oxygen. By adjusting the applied bias, the existing forms of the dye and active oxygen species at the electrode/electrolyte surface and their interactions can be controlled. It is the efficient method to study the visible light catalytic degradation reaction mechanism. Both the hydroxyl radical and the dye cationic radical have a decisive role on the photoelectrocatalytic degradation of dyes under the conditions of negative bias and visible light.

Key words: (Ni-Mo)-TiO2 film, photoelectrocatalysis, negative bias, Rhodamine B, mechanism