Acta Chimica Sinica ›› 2019, Vol. 77 ›› Issue (10): 1045-1053.DOI: 10.6023/A19060205 Previous Articles Next Articles
Article
投稿日期:
2019-06-10
发布日期:
2019-08-28
通讯作者:
杨洋
E-mail:yyang@phy.ecnu.edu.cn
基金资助:
Yang, Penglia, Wang, Zhenxingb, Liang, Zuna, Liang, Hongtaoa, Yang, Yanga*()
Received:
2019-06-10
Published:
2019-08-28
Contact:
Yang, Yang
E-mail:yyang@phy.ecnu.edu.cn
Supported by:
Share
Yang, Pengli, Wang, Zhenxing, Liang, Zun, Liang, Hongtao, Yang, Yang. A Molecular Dynamics Simulation Study of the Effect of External Electric Field on the Water Surface Potential[J]. Acta Chimica Sinica, 2019, 77(10): 1045-1053.
Δ?/V | $w_{1090}^{C}\text{/nm}$ | $w_{1090}^{A}\text{/nm}$ | $\chi _{1090}^{C}\text{/V}$ | $\chi _{1090}^{A}\text{/V}$ | (Debye?nm–3) | E0/(V?nm–1) | Ep/(V?nm–1) | |
---|---|---|---|---|---|---|---|---|
0 | 0.389(7) | 0.388(6) | 0.49(1) | 0.49(1) | 2.78(3) | 2.77(3) | 0.00 | 0.000 |
2 | 0.393(10) | 0.385(6) | 0.48(2) | 0.51(2) | 2.10(4) | 3.46(5) | 0.34 | 0.006 |
6 | 0.421(7) | 0.398(7) | 0.43(3) | 0.56(1) | 0.56(5) | 4.58(3) | 1.02 | 0.015 |
9 | 0.467(8) | 0.433(12) | 0.36(3) | 0.62(2) | –0.60(3) | 5.31(4) | 1.55 | 0.023 |
Δ?/V | $w_{1090}^{C}\text{/nm}$ | $w_{1090}^{A}\text{/nm}$ | $\chi _{1090}^{C}\text{/V}$ | $\chi _{1090}^{A}\text{/V}$ | (Debye?nm–3) | E0/(V?nm–1) | Ep/(V?nm–1) | |
---|---|---|---|---|---|---|---|---|
0 | 0.389(7) | 0.388(6) | 0.49(1) | 0.49(1) | 2.78(3) | 2.77(3) | 0.00 | 0.000 |
2 | 0.393(10) | 0.385(6) | 0.48(2) | 0.51(2) | 2.10(4) | 3.46(5) | 0.34 | 0.006 |
6 | 0.421(7) | 0.398(7) | 0.43(3) | 0.56(1) | 0.56(5) | 4.58(3) | 1.02 | 0.015 |
9 | 0.467(8) | 0.433(12) | 0.36(3) | 0.62(2) | –0.60(3) | 5.31(4) | 1.55 | 0.023 |
[1] |
Bateni, A.; Susnar, S. S.; Amirfazli, A.; Neumann, A. W . Langmuir 2004, 20, 7589.
doi: 10.1021/la0494167 |
[2] |
Bateni, A.; Laughton, S. J..; Tavana, H.; Susnar, S. S.; Amirfazli, A.; Neumann, A. Colloid Interface Sci.2005,283, 215.
doi: 10.1016/j.jcis.2004.08.134 |
[3] |
Eggers, J.; Villermaux, E . Rep. Prog. Phys.2008, 71, 036601.
doi: 10.1088/0034-4885/71/3/036601 |
[4] |
Yan, J. Y.; Patey, G. N. J. Phys. Chem. Lett. 2011, 2, 2555.
doi: 10.1021/jz201113m |
[5] |
Yan, J. Y.; Patey, G. N . J. Phys. Chem. A 2012, 116, 7057.
doi: 10.1021/jp3039187 |
[6] |
Yan, J. Y.; Patey, G. N . J. Chem. Phys. 2013, 139, 144501.
doi: 10.1063/1.4824139 |
[7] |
Yan, J.; Overduin, S. D.; Patey, G. N . J. Chem. Phys. 2014, 141, 074501.
doi: 10.1063/1.4892586 |
[8] |
Zhang, Z. S.; Liu, X. Y. Chem. Soc. Rev. 2018, 47, 7116.
doi: 10.1039/C8CS00626A |
[9] | Dash, J. G.; Rempel, A. W.; Wettlaufer, J. S . Rev. Mod. Phys. 2006, 78, 3. |
[10] |
Qiu, H.; Guo, W. L . Phys. Rev. Lett. 2013, 110, 195701.
doi: 10.1103/PhysRevLett.110.195701 |
[11] |
Mei, F.; Zhou, X. Y.; Kou, J. L.; Wu, F. M.; Wang, C. L.; Lu, H. J . J. Chem. Phys. 2015,142, 134704.
doi: 10.1063/1.4916521 |
[12] |
Zangi, R.; Mark, A. E . J. Chem. Phys. 2004, 120, 7123.
doi: 10.1063/1.1687315 |
[13] |
Choi, E. M.; Yoon, Y. H.; Lee, S.; Kang, H . Phys. Rev. Lett. 2005, 95, 085701.
doi: 10.1103/PhysRevLett.95.085701 |
[14] |
Ehre, D.; Lavert, E.; Lahav, M.; Lubomirsky, L . Science 2010, 327, 672.
doi: 10.1126/science.1178085 |
[15] |
Carpenter, K.; Bahadur, V . Langmuir 2015, 31, 2243.
doi: 10.1021/la504792n |
[16] |
Nandi, P. K.; Burnham, C. J.; English, N. J . J. Chem. Phys. 2018, 148, 044503.
doi: 10.1063/1.5004509 |
[17] |
Zaragoza, A.; Espinosa, J. R.; Ramos, R.; Cobos, J. A.; Aragones, J. L.; Vega, C.; Sanz, E.; Ramírez, J.; Valeriani, C . J. Phys.: Condens. Mat. 2018, 30, 174002.
doi: 10.1088/1361-648X/aab464 |
[18] |
Fernández, M. S.; Peeters, F. M.; Neek-Amal, M. Phys. Rev. B 2016, 94, 045436.
doi: 10.1103/PhysRevB.94.045436 |
[19] |
Vorob’ev, V. S.; Malyshenko, S. P . Phys. Rev. Lett. 2006, 96, 075701.
doi: 10.1103/PhysRevLett.96.075701 |
[20] |
Maerzke, K. A.; Siepmann, J. I . J. Phys. Chem. B 2010, 114, 4261.
doi: 10.1021/jp9101477 |
[21] |
Aragones, J. L.; MacDowell, L. G.; Siepmann, J. I.; Vega1, C.Phys. Rev. Lett. 2011, 107, 155702.
doi: 10.1103/PhysRevLett.107.155702 |
[22] |
Skinnera, L. B.; Benmorea, C. J.; Shyama, B.; J. K. R. Webera, J. K. R; Pariseb, J. B. Proc. Nat. Acad. Sci. U.S.A. 2012, 109, 16463.
doi: 10.1073/pnas.1210732109 |
[23] |
Saitta, A. M.; Saija, F.; Giaquinta, P. V . Phys. Rev. Lett. 2012, 108, 207801.
doi: 10.1103/PhysRevLett.108.207801 |
[24] |
Futera, Z.; English, N. J . J. Chem. Phys. 2017, 147, 031102.
doi: 10.1063/1.4994694 |
[25] | Warshavsky, V. B.; Bykov, T. V.; Zeng, X. C . J. Chem. Phys. 2001, 114, 1. |
[26] |
Han, G. Z.; Meng, J. J . Continuum Mech. Thermodyn. 2018, 30, 817.
doi: 10.1007/s00161-018-0644-8 |
[27] | Hayes, C. F . J. Phys. Chem. 1975, 79, 16. |
[28] |
Pethica, B. A . Langmuir 1998, 14, 3115.
doi: 10.1021/la971142i |
[29] | Sato, M.; Kudo, N.; Saito, N. IEEE Transactions on Industry Applications 1998, 34, 2. |
[30] |
Vega, C.; Abascal, J. L . F.Phys. Chem. Chem. Phys. 2011, 13, 19663.
doi: 10.1039/c1cp22168j |
[31] |
Moore, S. G.; Stevens, M. J.; Grest, G. S . Phys. Rev. E 2015, 91, 022309.
doi: 10.1103/PhysRevE.91.022309 |
[32] |
Shi, B.; Agnihotri, M. V.; Chen, S. H.; Black, R.; Singer, S. J . J. Chem. Phys. 2016, 144, 164702.
doi: 10.1063/1.4945760 |
[33] |
Koski, J. P.; Moore, S. G.; Grest, G. S.; Stevens, M. J . Phys. Rev. E 2017, 96, 063106.
doi: 10.1103/PhysRevE.96.063106 |
[34] |
Nikzad, M.; Azimian, A. R.; Rezaei, M.; Nikzad, S . J. Chem. Phys. 2017, 147, 204701.
doi: 10.1063/1.4985875 |
[35] | Jackson, J. D . Classical Electrodynamics, 3rd ed., Wiley, Hoboken, NJ, 1999. |
[36] | Griffiths, D. J . Introduction to Electrodynamics, 3rd ed.: Prentice-Hall, Upper Saddle River, NJ, 1999. |
[37] |
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan1, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K. Science 2018, 360, 1339.
doi: 10.1126/science.aat4191 |
[38] |
Willard, A. P.; Reed, S. K.; Madden, P. A.; Chandler, D . Faraday Discuss. 2009, 141, 423.
doi: 10.1039/B805544K |
[39] |
Vatamanu, J.; Borodin, O.; Smith, G. D . J. Am. Chem. Soc. 2010, 132, 14825.
doi: 10.1021/ja104273r |
[40] |
Merlet, C.; Salanne, M.; Rotenberg, B.; Madden, P. A . J. Phys. Chem. C 2011, 115, 16613.
doi: 10.1021/jp205461g |
[41] |
Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P.-L.; Simon, P.; Gogotsi, Y.; Salanne, M . Nat. Mater. 2012, 11, 306.
doi: 10.1038/nmat3260 |
[42] |
Limmer, D. T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P. A.; van Roij, P.; Rotenberg, B. Phys. Rev. Lett. 2013, 111, 106102.
doi: 10.1103/PhysRevLett.111.106102 |
[43] |
Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D . Proc. Nat. Acad. Sci. U.S.A. 2013, 110, 4200.
doi: 10.1073/pnas.1301596110 |
[44] |
Vatamanu, J.; Vatamanu, M.; Bedrov, D . ACS Nano 2015, 9, 5999.
doi: 10.1021/acsnano.5b00945 |
[45] |
Vatamanu, J.; Bedrov, D . J. Phys. Chem. Lett. 2015, 6, 3594.
doi: 10.1021/acs.jpclett.5b01199 |
[46] |
Limmer, D. T.; Willard, A. P.; Madden, P. A.; Chandler, D . J. Phys. Chem. C 2015, 119, 24016.
doi: 10.1021/acs.jpcc.5b08137 |
[47] | Parsons, R . Modern Aspects of Electrochemistry, Vol. 1, Ed.: Bokris,J. O.-M. London, Butterworths, 1954. |
[48] | Matsumoto, M.; Kataoka, Y . J. Chem. Phys. 1988, 88, 3233. |
[49] | Brodskaya, E. N.; Zakharov, V. V . J. Chem. Phys. 1995, 2, 4595. |
[50] |
Wilson, M. A.; Pohorille, A.; Pratt, L. R . J. Chem. Phys. 1988, 88, 3281.
doi: 10.1063/1.453923 |
[51] |
Sokhan, V. P.; Tildesley, D. J . Mol. Phys. 1997, 92, 625.
doi: 10.1080/002689797169916 |
[52] |
Kathmann, S. M.; Kuo, I. W.; Mundy, C. J . J. Am. Chem. Soc. 2008, 130, 16556.
doi: 10.1021/ja802851w |
[53] |
Harder, E.; Roux, B . J. Chem. Phys. 2008, 129, 234706.
doi: 10.1063/1.3027513 |
[54] |
Randles, J. E. B . Phys. Chem. Liq. 1977, 7, 107.
doi: 10.1080/00319107708084730 |
[55] |
Pratt, L. R . J. Phys. Chem. 1992, 96, 25.
doi: 10.1021/j100180a010 |
[56] |
Barraclough, C. G.; McTigue, P. T.; Ng, Y. L. J. Electroanal. Chem. 1992, 329, 9.
doi: 10.1016/0022-0728(92)80205-I |
[57] |
Parfenyuk, V. I . Colloid J. 2002, 64, 588.
doi: 10.1023/A:1020614010528 |
[58] |
Yang, L.; Fishbine, B. H.; Migliori, A.; Pratt, L. R . J. Am. Chem. Soc. 2009, 131, 12373.
doi: 10.1021/ja9044554 |
[59] |
Yang, L.; Fishbine, B. H.; Migliori, A.; Pratt, L. R . J. Chem. Phys. 2010, 132, 044701.
doi: 10.1063/1.3294560 |
[60] |
Shim, Y.; Kim, H. J.; Jung, Y . Faraday Discuss. 2012, 154, 249.
doi: 10.1039/c1fd00086a |
[61] |
Feng, G.; Cummings, P. T . J. Phys. Chem. Lett. 2011, 2, 2859.
doi: 10.1021/jz201312e |
[62] |
Feng, G.; Li, S.; Atchison, J. S.; Presser, V.; Cummings, P. T . J. Phys. Chem. C 2013, 117, 9178.
doi: 10.1021/jp403547k |
[63] |
Reed, S. K.; Lanning, O. J.; Madden, P. A . J. Chem. Phys. 2007, 126, 084704.
doi: 10.1063/1.2464084 |
[64] |
Reed, S. K.; Madden, P. A.; Papadopoulos, A . J. Chem. Phys. 2008, 128, 124701.
doi: 10.1063/1.2844801 |
[65] |
Gingrich, T. R.; Wilson, M . Chem. Phys. Lett. 2010, 500, 178.
doi: 10.1016/j.cplett.2010.10.010 |
[66] |
Wang, Z. X.; Yang, Y.; Olmsted, D. L.; Asta, M.; Laird, B. B. J. Chem. Phys. 2014, 141, 184102.
doi: 10.1063/1.4899176 |
[67] |
Doppenschmidt, A.; Butt, H.-J . Langmuir 2000, 16, 6709.
doi: 10.1021/la990799w |
[68] |
Pickering, I.; Paleico, M.; Sirkin, Y. A. P.; Scherlis, D. A.; Factorovich, M. H . J. Phys. Chem. B 2018, 122, 4880.
doi: 10.1021/acs.jpcb.8b00784 |
[69] |
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.
doi: 10.1021/j100308a038 |
[70] |
Yeh, I. C.; Berkowitz, M . J. Chem. Phys. 1999, 111, 3155.
doi: 10.1063/1.479595 |
[71] |
Ciccotti, G.; Ryckaert, J. P . Comput. Phys. Rep. 1986, 4, 346.
doi: 10.1016/0167-7977(86)90022-5 |
[72] | Alejandre, J.; Chapela, D. J. T. A . J. Chem. Phys. 1995, 120, 15. |
[73] |
Wang, Z. X.; Olmsted, D. L.; Asta, M.; Laird, B. B . J. Phys. Condens. Matter 2016, 28, 464006.
doi: 10.1088/0953-8984/28/46/464006 |
[74] | Smith, G ., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford, Clarendon, 1985. |
[75] |
Sachs, J. N.; Crozier, P. S.; Woolf, T. B . J. Chem. Phys. 2004, 121, 10847.
doi: 10.1063/1.1826056 |
[76] |
Li, S.; Feng, G.; Cummings, P. T . J. Phys. Condens. Matter 2014, 26, 284106.
doi: 10.1088/0953-8984/26/28/284106 |
[77] | Skollermo, G . Math. Comput. 1975, 29, 697. |
[78] |
Yang, Y.; Laird, B. B . J. Phys. Chem. B 2014, 118, 8373.
doi: 10.1021/jp5019313 |
[79] | Reynolds, W ., Thermodynamic Properties in SI: Graphs, Tables, and Computational Equations for Forty Substances, Stanford, CA, Dept. of Mechanical Engineering, Stanford University, 1979. |
[80] |
Warshavsky, V.; Zeng, X. C . Phy. Rev. E 2003, 68, 051203
doi: 10.1103/PhysRevE.68.051203 |
[81] |
Richmond, G. L . Chem. Rev. 2002, 102, 2693.
doi: 10.1021/cr0006876 |
[1] | Duanda Wang, Xinyi Shen, Yongyang Song, Shutao Wang. Application Progress of Emerging Janus Particles for Oil-Water Separation★ [J]. Acta Chimica Sinica, 2023, 81(9): 1187-1195. |
[2] | Di Yang, Xiaofan Shi, Jijie Zhang, Xian-He Bu. Recent Research Progress and Prospect of Photothermal Materials in Seawater Desalination★ [J]. Acta Chimica Sinica, 2023, 81(8): 1052-1063. |
[3] | Wei Hou, Yancai Yao, Lizhi Zhang. Advances in Electrochemical Reductive Removal of Oxyanions in Water★ [J]. Acta Chimica Sinica, 2023, 81(8): 979-989. |
[4] | Liu Zhenyu, Gan Li-Hua. Molecular Dynamics Simulation of Acetylene Pyrolysis into Fullerenes [J]. Acta Chimica Sinica, 2023, 81(5): 502-510. |
[5] | Huiying Zhang, Shuyan Yu, Congju Li. Electrocatalytic Degradation of Wastewater by Polymer-based Carbon Nanomembranes and Mechanism [J]. Acta Chimica Sinica, 2023, 81(4): 420-430. |
[6] | Wentao Wang, Xinting Lai, Shiquan Yan, Lei Zhu, Yuyuan Yao, Liming Ding. Synergistic Treatment of Dye Wastewater by the Adsorption-Degradation of a Bifunctional Aerogel [J]. Acta Chimica Sinica, 2023, 81(3): 222-230. |
[7] | Zhenhong Yang, Xiaojuan Gan, Shuzhe Wang, Junyuan Duan, Tianyou Zhai, Youwen Liu. Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★ [J]. Acta Chimica Sinica, 2023, 81(11): 1471-1477. |
[8] | Yizhi Han, Jianhui Lan, Xue Liu, Weiqun Shi. Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning [J]. Acta Chimica Sinica, 2023, 81(11): 1663-1672. |
[9] | Ke Zhao, Xiayu Cheng, Xuexue Ma, Minghui Geng. Mechanism of Two-photon Absorption Enhancement for a Piperazine-based Zinc Ion Probe [J]. Acta Chimica Sinica, 2023, 81(10): 1371-1378. |
[10] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[11] | Zipeng Qi, Dong Gao, Zhicheng Zhu, Zhiyuan He, Guoying Bai. Regulating Optical Properties of Water-Soluble Conjugated Polythiophene with Polyvinyl Alcohol [J]. Acta Chimica Sinica, 2022, 80(7): 921-928. |
[12] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[13] | Sen Xu, Liling Wu, Zhenyu Li. Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling※ [J]. Acta Chimica Sinica, 2022, 80(5): 598-606. |
[14] | Jinge Wang, Wei Zhou, Jiayi Li, Yani Ding, Jihui Gao. Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis [J]. Acta Chimica Sinica, 2022, 80(11): 1555-1568. |
[15] | Bolong Jiang, Yanyan Cui, Shunjie Shi, Nan Jiang, Weiqiang Tan. Preparation of Highly Active Transition Bimetallic Nitride NiMoN Hydrogen Evolution Reaction (HER) Catalyst and Its Performance Study in Seawater Electrolysis [J]. Acta Chimica Sinica, 2022, 80(10): 1394-1400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||