有机化学 ›› 2021, Vol. 41 ›› Issue (2): 490-503.DOI: 10.6023/cjoc202007030 上一篇 下一篇
综述与进展
收稿日期:
2020-07-09
修回日期:
2020-08-11
发布日期:
2020-09-16
通讯作者:
汤峨
作者简介:
基金资助:
Shuyu Zhang1, Haotian Wu1, E Tang1,*()
Received:
2020-07-09
Revised:
2020-08-11
Published:
2020-09-16
Contact:
E Tang
Supported by:
文章分享
高价有机碘化合物的反应性质与过渡金属相似, 其参与的反应具有反应条件较温和、选择性好、产率高及环境友好等优点, 因而近年来关于高价有机碘试剂的研究受到广泛关注, 在有机合成领域中获得了较多应用. 综述了近年来高价有机碘试剂2-碘酰基苯基酸(IBX)在有机合成中的研究及应用, 包括IBX在氧化羟基、含氮化合物和含硫化合物, 在制备αβ-不饱和羰基化合物和α,β-不饱和酯, 以及在不对称合成等方面的应用. 最后介绍了近期对IBX的改进.
张书瑜, 吴昊天, 汤峨. 2-碘酰基苯甲酸在有机合成中的研究与应用[J]. 有机化学, 2021, 41(2): 490-503.
Shuyu Zhang, Haotian Wu, E Tang. Research and Application of 2-Iodoxybenzoic Acid in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 490-503.
[1] |
Willgerodt C. J. Prakt. Chem. 1886, 33, 154.
doi: 10.1002/(ISSN)1521-3897 |
[2] |
Dess D.B.; Martin J.C. J. Org. Chem. 1983, 48, 4155.
doi: 10.1021/jo00170a070 |
[3] |
(a) Reddy Kandimalla, S.; Prathima Parvathaneni, S.; Sabitha, G.; Subba Reddy, B.V. Eur. J. Org. Chem. 2019, 2019, 1687.
doi: 10.1002/ejoc.201801469 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
(b) Zhang H.; Tang R.; Shi X.; Xie L; Wu J.W. Chin. J. Org. Chem. 2019, 39, 1837. (in Chinese)
doi: 10.6023/cjoc201902006 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
张怀远, 唐蓉萍; 石星丽; 颉林; 伍家卫, 有机化学, 2019, 39, 1837.).
doi: 10.6023/cjoc201902006 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
(c) Liu D.; He J.; Zhang C. Univ. Chem. 2019, 34, 1. (in Chinese)
pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
刘丹, 贺家豪, 张弛, 大学化学, 2019, 34, 1).
pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
(d) Li X.; Chen P.; Liu G. Beilstein J. Org. Chem. 2018, 14, 1813.
doi: 10.3762/bjoc.14.154 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
(e) Gao H.; Huang J.; Jiang Q.; Guo W.; Ge C.; Jiang H. Chem. Reagents 2016, 38, 1165. (in Chinese)
pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
高浩凌, 黄骏, 江群, 郭文光, 葛承胜, 姜洪涛, 化学试剂, 2016, 38, 1165.).
pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
(f) Duan Y.-N.; Jiang S.; Han Y.-C.; Sun B.; Zhang C. Chin. J. Org. Chem. 2016, 36, 1973. (in Chinese)
doi: 10.6023/cjoc201605007 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.).
doi: 10.6023/cjoc201605007 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
(g) Chen J.; Qu H.; Peng J.; Chen C. Chin. J. Org. Chem. 2015, 35, 937. (in Chinese)
doi: 10.6023/cjoc201501004 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
陈静, 曲红梅, 彭静, 陈超, 有机化学, 2015, 35, 937.).
doi: 10.6023/cjoc201501004 pmid: 190546F5-109C-4850-9E4E-54C54A95BB3A |
|
[4] |
(a) Satam V.; Harad A.; Rajule R.; Pati H. Tetrahedron 2010, 66, 7659.
doi: 10.1016/j.tet.2010.07.014 pmid: 32B66515-2F05-453C-8BC6-3041A653B5B6 |
(b) Qin K.Y.; Su G.F.; Rao W.P.; Tan G.M. Chin. J. Org. Chem. 2006, 26, 1623. (in Chinese)
pmid: 32B66515-2F05-453C-8BC6-3041A653B5B6 |
|
覃开云, 苏桂发, 饶万平, 谭光明, 有机化学, 2006, 26, 1623.).
pmid: 32B66515-2F05-453C-8BC6-3041A653B5B6 |
|
[5] |
Frigerio M.; Santagostino M. Tetrahedron Lett. 1994, 35, 8019.
doi: 10.1016/S0040-4039(00)78412-7 |
[6] |
Wang Y.-H.; Cong H.; Zhao F.-F.; Xue S.-F.; Tao Z.; Zhu Q.-J.; Wei G. Catal. Commun. 2 0 11, 12, 1127.
|
[7] |
Bartlett S.L.; Beaudry C.M. J. Org. Chem. 2011, 76, 9852.
doi: 10.1021/jo201810c |
[8] |
Liu Y.; Xie A.; Cao M.; Feng L.; Wang B. Asian J. Chem. 2015, 27, 587.
doi: 10.14233/ajchem |
[9] |
Xie A.; Zhou X.; Feng L.; Hu X.; Dong W. Tetrahedron 2014, 70, 3514.
doi: 10.1016/j.tet.2014.03.047 |
[10] |
Kumar S.; Ahmed N. Green Chem. 2016, 18, 648.
doi: 10.1039/C5GC01785H |
[11] |
Raghavan S.; Kumar V.V. Tetrahedron 2013, 69, 4835.
doi: 10.1016/j.tet.2013.04.059 |
[12] |
Kamal A.; Shaik A.B.; Jain N.; Kishor C.; Nagabhushana A.; Supriya B.; Bharath Kumar G.; Chourasiya S.S.; Suresh Y.; Mishra R.K.; Addlagatta A. Eur. J. Med. Chem. 2015, 92, 501.
doi: 10.1016/j.ejmech.2013.10.077 |
[13] |
Kinoshita Y.; Kitagawa Y.; Tamiaki H. Chem.- Eur. J. 2016, 22, 9996.
doi: 10.1002/chem.201601882 |
[14] |
Kawase M.; Saijo R.; Mori S.; Uno H. Heterocycles 2017, 94, 2103.
doi: 10.3987/COM-17-13802 |
[15] |
Karimov R.R.; Tan D.S.; Gin D.Y. Tetrahedron 2018, 74, 3370.
doi: 10.1016/j.tet.2018.04.051 pmid: 30467444 |
[16] |
Parasuraman K.; Chennaiah A.; Dubbu S.; Ibrahim Sheriff A.K.; Vankar Y.D. Carbohydr. Res. 2019, 477, 26.
doi: 10.1016/j.carres.2019.03.007 |
[17] |
(a) Dai D.; Venepalli B.R. Tetrahedron Lett. 2015, 56, 2402.
doi: 10.1016/j.tetlet.2015.03.035 |
(b) Stephenson G.R.; Roe C.; Anson C.E. J. Org. Chem. 2012, 77, 9684.
doi: 10.1021/jo301617f |
|
[18] |
Lu T.-J.; Lin C.-K. J. Org. Chem. 2011, 76, 1621.
doi: 10.1021/jo1022537 |
[19] |
Takale B.S.; Telvekar V.N. Chem. Lett. 2010, 39, 546.
doi: 10.1246/cl.2010.546 |
[20] |
Chen L.-X.; Huang Y.-H.; Cong H.; Tao Z. Chem. Pap. 2018, 72, 661.
doi: 10.1007/s11696-017-0313-6 |
[21] |
Narayana Murthy, S.; Nageswar, Y. V. D. Tetrahedron Lett. 2011, 52, 4481.
doi: 10.1016/j.tetlet.2011.06.077 |
[22] |
Chandrasekar S.; Sekar G. Org. Biomol. Chem. 2016, 14, 3053.
doi: 10.1039/C5OB02659H |
[23] |
Parmeggiani C.; Matassini C.; Cardona F.; Goti A. Synthesis 2017, 49, 2890.
doi: 10.1055/s-0036-1588457 |
[24] |
Matassini C.; Parmeggiani C.; Cardona F.; Goti A. Org. Lett. 2015, 17, 4082.
doi: 10.1021/acs.orglett.5b02029 |
[25] |
Moorthy J.N.; Neogi I. Tetrahedron Lett. 2011, 52, 3868.
doi: 10.1016/j.tetlet.2011.05.047 |
[26] |
Alam M.T.; Maiti S.; Mal P. Beilstein J. Org. Chem. 2018, 14, 2396.
doi: 10.3762/bjoc.14.216 |
[27] |
Khan P.R.; Durgaprasad M.; Reddy S.G.; Reddy G.R.; Hussein I.A.; Subba Reddy, B.V.Lett. Org. Chem. 2018, 15, 64.
|
[28] |
Wagh Y.S.; Tiwari N.J.; Bhanage B.M. Tetrahedron Lett. 2013, 54, 1290.
doi: 10.1016/j.tetlet.2012.12.127 |
[29] |
Victor N.J.; Muraleedharan K.M. Adv. Synth. Catal. 2014, 356, 3600.
doi: 10.1002/adsc.v356.17 |
[30] |
Makra Z.; Puskas L.G.; Kanizsai I. Org. Biomol. Chem. 2019, 17, 9001.
doi: 10.1039/C9OB01708A |
[31] |
Harschneck T.; Hummel S.; Kirsch S.F.; Klahn P. Chem.- Eur. J. 2012, 18, 1187.
doi: 10.1002/chem.201102680 |
[32] |
Potturi H.K.; Gurung R.K.; Hou Y. J. Org. Chem. 2012, 77, 626.
doi: 10.1021/jo202276x |
[33] |
Zhang Z.; Zheng D.; Wan Y.; Zhang G.; Bi J.; Liu Q.; Liu T.; Shi L. J. Org. Chem. 2018, 83, 1369.
doi: 10.1021/acs.joc.7b02880 |
[34] |
Ambule M.D.; Tripathi S.; Ghoshal A.; Srivastava A.K. Chem. Commun. 2019, 55, 10872.
doi: 10.1039/c9cc05215a pmid: WOS:000484981000005 |
[35] |
Zhang Z.G.; Li X.; Song M.M.; Wang Y.M.; Zheng D.; Zhang G.S.; Chen G. J. Org. Chem. 2019, 84, 12792.
doi: 10.1021/acs.joc.9b01362 |
[36] |
Shukla V.G.; Salgaonkar P.D.; Akamanchi K.G. J. Org. Chem. 2003, 68, 5422.
doi: 10.1021/jo034483b |
[37] |
Poeira D.L.; Macara J.; Faustino H.; Coelho J. A. S.; Gois P. M. P.; Marques M. M. B.Eur. J. Org. Chem. 2019, 2019, 2695.
doi: 10.1002/ejoc.201900259 pmid: WOS:000466513300016 |
[38] |
Moorthy J.N.; Senapati K.; Parida K.N.; Jhulki S.; Sooraj K.; Nair N.N. J. Org. Chem. 2011, 76, 9593.
doi: 10.1021/jo201491q |
[39] |
Ogawa S.; Zhou B.; Kimoto Y.; Omura K.; Kobayashi A.; Higashi T.; Mitamura K.; Ikegawa S.; Hagey L.R.; Hofmann A.F.; Iida T. Steroids 2013, 78, 927.
doi: 10.1016/j.steroids.2013.05.011 |
[40] |
Ren J.; Lu L.; Xu J.; Yu T.; Zeng B.-B. Synthesis 2015, 47, 2270.
doi: 10.1055/s-00000084 |
[41] |
Kuga T.; Sasano Y.; Iwabuchi Y. Chem. Commun. 2018, 54, 798.
doi: 10.1039/C7CC08957K |
[42] |
Chaves M. R. B.; Moran P. J. S.; Rodrigues J. A. R.J. Mol. Catal. B : Enzym. 2013, 98, 73.
doi: 10.1016/j.molcatb.2013.09.018 |
[43] |
Satish G.; Polu A.; Ramar T.; Ilangovan A. J. Org. Chem. 2015, 80, 5167.
doi: 10.1021/acs.joc.5b00581 |
[44] |
Sundaravelu N.; Chakraborty A.; Sekar G. ChemistrySelect 2018, 3, 8167.
doi: 10.1002/slct.201800941 |
[45] |
Saidhareddy P.; Ajay S.; Shaw A.K. Tetrahedron 2017, 73, 4407.
doi: 10.1016/j.tet.2017.06.001 |
[46] |
Kang Y.K.; Kim D.Y. Chem. Commun. 2014, 50, 222.
doi: 10.1039/C3CC46710D |
[47] |
Barontini M.; Bernini R.; Crisante F.; Fabrizi G. Tetrahedron 2010, 66, 6047.
doi: 10.1016/j.tet.2010.06.014 |
[48] |
Desai V.G.; Desai S.R. Curr. Org. Synth. 2017, 14, 1180.
|
[49] |
Boulange A.; Peixoto P.A.; Franck X. Chem.- Eur. J. 2011, 17, 10241.
doi: 10.1002/chem.v17.37 |
[50] |
Xu S.; Itto K.; Satoh M.; Arimoto H. Chem. Commun. 2014, 50, 2758.
doi: 10.1039/C3CC49160A |
[51] |
Kan X.-W.; Deng X.-X.; Du F.-S.; Li Z.-C. Macromol. Chem. Phys. 2014, 215, 2221.
doi: 10.1002/macp.v215.22 |
[52] |
Mukherjee S.; Yang J.W.; Hoffmann S.; List B. Chem. Rev. 2007, 107, 5471.
pmid: 18072803 |
[53] |
Hu X.; Yang X.; Dai X.-J.; Li C.-J. Adv. Synth. Catal. 2017, 359, 2402.
doi: 10.1002/adsc.v359.14 |
[54] |
Zall A.; Bensinger D.; Schmidt B. Eur. J. Org. Chem. 2012, 2012, 1439.
doi: 10.1002/ejoc.v2012.7 |
[55] |
Deshmukh S.S.; Huddar S.N.; Jadhav R.R.; Akamanchi K.G. Tetrahedron Lett. 2011, 52, 4533.
doi: 10.1016/j.tetlet.2011.06.068 |
[56] |
Guha S.; Kazi I.; Mukherjee P.; Sekar G. Chem. Commun. 2017, 53, 10942.
doi: 10.1039/C7CC05697D |
[57] |
Mishra A.K.; Moorthy J.N. Org. Chem. Front. 2017, 4, 343.
doi: 10.1039/C6QO00588H |
[58] |
Moorthy J.N.; Parida K.N. J. Org. Chem. 2014, 79, 11431.
doi: 10.1021/jo502002w |
[59] |
Seth S.; Jhulki S.; Moorthy J.N. Eur. J. Org. Chem. 2013, 2013, 2445.
doi: 10.1002/ejoc.201201699 |
[60] |
Jhulki S.; Seth S.; Mondal M.; Moorthy J.N. Tetrahedron 2014, 70, 2286.
doi: 10.1016/j.tet.2014.01.034 |
[61] |
Chandra A.; Parida K.N.; Moorthy J.N. Tetrahedron 2017, 73, 5827.
doi: 10.1016/j.tet.2017.08.019 |
[62] |
Mishra A.K.; Moorthy J.N. J. Org. Chem. 2016, 81, 6472.
doi: 10.1021/acs.joc.6b01105 |
[63] |
Mishra A.K.; Mukhopadhyay A.; Moorthy J.N. Tetrahedron 2017, 73, 2210.
doi: 10.1016/j.tet.2017.02.052 |
[64] |
Chandra A.; Jana K.; Moorthy J.N. ACS Omega 2020, 5, 207.
doi: 10.1021/acsomega.9b02489 pmid: 31956767 |
[65] |
Chandra A.; Yadav N.R.; Moorthy J.N. Tetrahedron 2019, 75, 2169.
doi: 10.1016/j.tet.2019.02.033 pmid: WOS:000463311400012 |
[66] |
Zhao M.-L.; Zhang E.; Gao J.; Zhang Z.; Zhao Y.-T.; Qu W.; Liu H.-M. Carbohydr. Res. 2012, 351, 126.
doi: 10.1016/j.carres.2012.01.013 |
[67] |
Kobayashi T.; Tanaka K.; Ishida M.; Yamakita N.; Abe H.; Ito H. Chem. Commun. 2018, 54, 10316.
doi: 10.1039/C8CC06185H |
[68] |
Tognetti V.; Boulangé A.; Peixoto P.A.; Franck X.; Joubert L. J. Mol. Model. 2014, 20, 2342.
doi: 10.1007/s00894-014-2342-1 pmid: 25038631 |
[69] |
Jiang H.; Sun T.-Y.; Wang X.; Xie Y.; Zhang X.; Wu Y.-D.; Schaefer H.F. Org. Lett. 2017, 19, 6502.
doi: 10.1021/acs.orglett.7b03167 |
[70] |
Chipman A.; Farshadfar K.; Smith J.A.; Yates B.F.; Ariafard A. J. Org. Chem. 2020, 85, 515.
doi: 10.1021/acs.joc.9b02583 |
[71] |
Wagh G.; Autade S.; Patil P.C.; Akamanchi K.G. New J. Chem. 2018, 42, 3301.
doi: 10.1039/C7NJ04701K |
[72] |
Magano J.; Acciacca A.; Akin A.; Collman B.M.; Conway B.; Waldo M.; Chen M.H.; Mennen K.E. Org. Process Res. Dev. 2009, 13, 555.
doi: 10.1021/op800307k |
[73] |
Koch A.A.; Hansen D.A.; Shende V.V.; Furan L.R.; Houk K.N.; Jimenez-Oses G.; Sherman D.H. J. Am. Chem. Soc. 2017, 139, 13456.
doi: 10.1021/jacs.7b06436 |
[74] |
Singh A.; Mir N.A.; Choudhary S.; Singh D.; Sharma P.; Kant R.; Kumar I. RSC Adv. 2018, 8, 15448.
doi: 10.1039/C8RA01637B |
[75] |
Mullagiri K.; Nayak V.L.; Sunkari S.; Mani G.S.; Guggilapu S.D.; Nagaraju B.; Alarifi A.; Kamal A. MedChemComm 2018, 9, 275.
doi: 10.1039/c7md00450h pmid: 30108921 |
[76] |
Srinivas A.; Karthik P.; Sunitha M.; Reddy K.V. Acta Chim. Slovaca 2019, 66, 700.
|
[77] |
Zhu L.; Ma W.; Zhang M.; Lee M.M.-L.; Wong W.-Y.; Chan B.D.; Yang Q.; Wong W.-T.; Tai W.C.-S.; Lee C.-S. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-017-02088-w |
[78] |
Yusubov M.S.; Soldatova N.S.; Postnikov P.S.; Valiev R.R.; Yoshimura A.; Wirth T.; Nemykin V.N.; Zhdankin V.V. Chem. Commun. 2019, 55, 7760.
doi: 10.1039/C9CC04203B |
[79] |
Kumanyaev I.M.; Lapitskaya M.A.; Vasiljeva L.L.; Pivnitsky K.K. Mendeleev Commun. 2012, 22, 129.
doi: 10.1016/j.mencom.2012.05.004 |
[80] |
Achar T.K.; Maiti S.; Mal P. RSC Adv. 2014, 4, 12834.
doi: 10.1039/C4RA00415A |
[81] |
Achar T.K.; Bose A.; Mal P. Beilstein J. Org. Chem. 2017, 13, 1907.
doi: 10.3762/bjoc.13.186 |
[82] |
Yakura T.; Fujiwara T.; Yamada A.; Nambu H. Beilstein J. Org. Chem. 2018, 14, 971.
doi: 10.3762/bjoc.14.82 |
[83] |
Cui L.-Q.; Dong Z.-L.; Liu K.; Zhang C. Org. Lett. 2011, 13, 6488.
doi: 10.1021/ol202777h |
[1] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[2] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[3] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[4] | 孟宪强, 杨艺, 梁万洁, 王靖涛, 张荣葵, 刘会. 钯催化联烯胺区域选择性芳基酚氧化反应[J]. 有机化学, 2024, 44(1): 224-231. |
[5] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[6] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[7] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[8] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[9] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[10] | 刘长俊, 胡慧玲, 刘宬宏, 朱超杰, 唐天地. 介孔ETS-10沸石担载Pd高效催化内炔氧化制备1,2-二酮[J]. 有机化学, 2023, 43(8): 2953-2960. |
[11] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[12] | 赵婷, 农旭华, 王佳莉, 许宽毓, 唐敏敏, 易继凌, 韩长日, 陈光英. 长花龙血树茎中抗氧化活性的木脂素类成分研究[J]. 有机化学, 2023, 43(8): 2968-2972. |
[13] | 张晓雨, 李欣燕, 崔冰, 邵志晖, 赵铭钦. 四氢-β-咔啉衍生物的设计、合成及抗氧化性能研究[J]. 有机化学, 2023, 43(8): 2885-2894. |
[14] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[15] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||