有机化学 ›› 2022, Vol. 42 ›› Issue (6): 1609-1625.DOI: 10.6023/cjoc202201047 上一篇 下一篇
综述与进展
收稿日期:
2022-01-28
修回日期:
2022-02-21
发布日期:
2022-03-03
通讯作者:
赵筱薇, 江智勇
基金资助:
Yanli Yina,c, Xiaowei Zhaob(), Zhiyong Jiangb,c()
Received:
2022-01-28
Revised:
2022-02-21
Published:
2022-03-03
Contact:
Xiaowei Zhao, Zhiyong Jiang
Supported by:
文章分享
氮杂芳烃衍生物在众多领域尤其是医药和材料工业中的重要性吸引了化学家对发展其高效合成方法的持续关注. 迄今, 以市售氮杂芳烃或其简单衍生物作为原料, 且利用氮杂芳烃的电子性质引发化学转化的官能团化策略已被认为是一种强有力的工具. 其中, 由于具有条件温和、官能团耐受性良好且反应形式多样等优点, 可见光驱动光催化的方法被广泛探索. 值得注意的是, 许多针对含亚胺氮杂芳烃衍生物合成的反应类型的不对称版本被成功开发, 所获得的对映体纯产物具有令人满意的结果. 依据所构建手性中心相对氮杂芳烃的位置分四个部分总结, 并讨论这一重要领域的发展.
尹艳丽, 赵筱薇, 江智勇. 可见光不对称催化合成手性氮杂芳烃衍生物[J]. 有机化学, 2022, 42(6): 1609-1625.
Yanli Yin, Xiaowei Zhao, Zhiyong Jiang. Asymmetric Photocatalytic Synthesis of Enantioenriched Azaarene Derivatives[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1609-1625.
[1] |
(a) Fréchet, J. M. J.; de Meftahi, M. V. Br. Polym. J. 1984, 16, 193.
doi: 10.1002/pi.4980160407 pmid: 33617254 |
(b) Majumdar, K. C.; Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis, Wiley-VCH Verlag, Weinheim, 2011.
pmid: 33617254 |
|
(c) Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, John Wiley & Sons, Chichester, 2011.
pmid: 33617254 |
|
(d) Li, J. J. Heterocyclic Chemistry in Drug Discovery, Ed.: Hoboken, N. J., John Wiley & Sons, Hoboken, New Jersey, 2013.
pmid: 33617254 |
|
(e) Chelucci, G. Coord. Chem. Rev. 2013, 257, 1887.
doi: 10.1016/j.ccr.2012.12.002 pmid: 33617254 |
|
(f) Guan, A.-Y.; Liu, C.-L.; Sun, X.-F.; Xie, Y.; Wang, M.-A. Bioorg. Med. Chem. 2016, 24, 342.
doi: 10.1016/j.bmc.2015.09.031 pmid: 33617254 |
|
(g) Brown, D. G.; Wobst, H. J. J. Med. Chem. 2021, 64, 2312.
doi: 10.1021/acs.jmedchem.0c01516 pmid: 33617254 |
|
[2] |
Boubertakh, O.; Goddard, J.-P. Eur. J. Org. Chem. 2017, 2017, 2072.
doi: 10.1002/ejoc.201601653 |
[3] |
(a) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903.
doi: 10.1021/cr078372e pmid: 18500844 |
(b) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190.
doi: 10.1039/b817310a pmid: 18500844 |
|
(c) Evano, G.; Theunissen, C. Angew. Chem., Int. Ed. 2019, 58, 7558.
doi: 10.1002/anie.201806631 pmid: 18500844 |
|
(d) Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org. Chem. 2010, 2010, 2635.
doi: 10.1002/ejoc.200901492 pmid: 18500844 |
|
[4] |
(a) Best, D.; Lam, H. W. J. Org. Chem. 2014, 79, 831.
doi: 10.1021/jo402414k pmid: 28762417 |
(b) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
doi: 10.1039/c7cs00339k pmid: 28762417 |
|
(c) Yin, Y.; Zhao, X.; Jiang, Z. ChemCatChem 2020, 12, 4471.
doi: 10.1002/cctc.202000741 pmid: 28762417 |
|
(d) Lv, X.; Xu, H.; Yin, Y.; Zhao, X.; Jiang, Z. Chin. J. Chem. 2020, 38, 1480.
doi: 10.1002/cjoc.202000306 pmid: 28762417 |
|
[5] |
(a) Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
doi: 10.1002/anie.201900977 |
(b) Sun, A. C.; McAtee, R. C.; McClain, E. J.; Stephenson, C. R. J. Synthesis 2019, 51, 1063.
doi: 10.1055/s-0037-1611658 |
|
(c) Zhao, Y.; Xia, W. Org. Biomol. Chem. 2019, 17, 4951.
doi: 10.1039/C9OB00244H |
|
(d) Dong, J.; Liu, Y.; Wang, Q. Chin. J. Org. Chem. 2021, 41, 3771. (in Chinese)
doi: 10.1021/jo00885a033 |
|
董建洋, 刘玉秀, 汪清民, 有机化学, 2021, 41, 3771.)
|
|
For a selected example via visible-light-driven asymmetric catalytic construction strategy, see: (e) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew. Chem., Int. Ed. 2004, 53, 3795.
|
|
[6] |
(a) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
doi: 10.1021/ja806781u pmid: 26938834 |
(b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12506.
pmid: 26938834 |
|
(c) Izquierdo, J.; Landa, A.; Bastida, I.; López, R.; Oiarbide, M.; Palomo, C. J. Am. Chem. Soc. 2016, 138, 3282.
doi: 10.1021/jacs.5b13385 pmid: 26938834 |
|
(d) Meazza, M.; Tur, F.; Hammer, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2017, 56, 1634.
pmid: 26938834 |
|
(e) Bai, X.; Zeng, G.; Shao, T.; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 3684.
doi: 10.1002/anie.201700190 pmid: 26938834 |
|
[7] |
(a) Rupnicki, L; Saxena, A.; Lam, H. W. J. Am. Chem. Soc. 2009, 131, 10386.
doi: 10.1021/ja904365h pmid: 20879736 |
(b) Pattison, G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132, 14373.
doi: 10.1021/ja106809p pmid: 20879736 |
|
(c) Saxena, A.; Lam, H. W. Chem. Sci. 2011, 2, 2326.
doi: 10.1039/c1sc00521a pmid: 20879736 |
|
(d) Saxena, A.; Choi, B.; Lam, H. W. J. Am. Chem. Soc. 2012, 134, 8428.
doi: 10.1021/ja3036916 pmid: 20879736 |
|
[8] |
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r |
(b) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 |
|
(c) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.
doi: 10.1016/j.tetlet.2016.07.032 |
|
(d) Zhao, H.; Cheng, D.; Xu, X. Chin, J. Org. Chem. 2021, 41, 642. (in Chinese)
|
|
( 赵赫, 程冬萍, 许孝良, 有机化学, 2021, 41, 642.)
doi: 10.6023/cjoc202005055 |
|
[9] |
(a) Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179.
doi: 10.1039/C4QO00306C pmid: 33077927 |
(b) Meggers, E. Chem. Commun. 2015, 51, 3290.
doi: 10.1039/C4CC09268F pmid: 33077927 |
|
(c) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 3872.
doi: 10.1002/anie.201411409 pmid: 33077927 |
|
(d) Jiang, C.; Chen, W.; Zheng, W.-H.; Lu, H. Org. Biomol. Chem. 2019, 17, 8673.
doi: 10.1039/C9OB01609K pmid: 33077927 |
|
(e) Yin, Y.; Zhao, X.; Qiao, B.; Jiang, Z. Org. Chem. Front. 2020, 7, 1283.
doi: 10.1039/D0QO00276C pmid: 33077927 |
|
(f) Proctor, R. S. J.; Colgan, A. C.; Phipps, R. J. Nat. Chem. 2020, 12, 990.
doi: 10.1038/s41557-020-00561-6 pmid: 33077927 |
|
(g) Yao, W.; Bazan-Bergamino, E. M.; Ngai, M.-Y. ChemCatChem 2022, 14, e202101292.
pmid: 33077927 |
|
[10] |
Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
doi: 10.1016/S0040-4039(00)70732-5 |
[11] |
Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907.
doi: 10.1021/acscatal.6b03215 |
[12] |
Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
doi: 10.1126/science.aar6376 pmid: 29622723 |
[13] |
Ermanis, K.; Colgan, A. C.; Proctor, R. S. J.; Hadrys, B. W.; Phipps, R. J.; Goodman, J. M. J. Am. Chem. Soc. 2020, 142, 21091.
|
[14] |
Reid, J. P.; Proctor, R. S. J.; Sigman, M. S.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 19178.
doi: 10.1021/jacs.9b11658 |
[15] |
Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
doi: 10.1021/acs.orglett.8b02791 |
[16] |
(a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062.
doi: 10.1039/C4RA05525J |
(b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443.
doi: 10.1002/anie.201505193 |
|
(c) Liu, Y.; Li, J.; Ye, X.; Zhao, X.; Jiang, Z. Chem. Commun. 2016, 52, 13955.
doi: 10.1039/C6CC07105H |
|
(d) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708.
doi: 10.1021/acscatal.6b00846 |
|
(e) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.
doi: 10.1021/acscatal.6b01969 |
|
(f) Shao, T.; Jiang, Z. Acta Chim. Sinica 2017, 75, 70. (in Chinese)
doi: 10.6023/A16080407 |
|
( 邵天举, 江智勇, 化学学报, 2017, 75, 70.)
doi: 10.6023/A16080407 |
|
(g) Bu, L.; Li, J.; Yin, Y.; Qiao, B.; Chai, G.; Zhao, X.; Jiang, Z. Chem.-Asian J. 2018, 13, 2382.
doi: 10.1002/asia.201800446 |
|
[17] |
Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
doi: 10.1126/science.aav3200 |
[18] |
Zheng, D.; Studer, A. Angew. Chem., Int. Ed. 2019, 58, 15803.
doi: 10.1002/anie.201908987 |
[19] |
Proctor, R. S. J.; Chuentragool, P.; Colgan, A. C.; Phipps, R. J. J. Am. Chem. Soc. 2021, 143, 4928.
doi: 10.1021/jacs.1c01556 |
[20] |
Mohr, J. T.; Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 359.
doi: 10.1038/nchem.297 |
[21] |
Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu, L.; Qiao, B.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2018, 140, 6083.
doi: 10.1021/jacs.8b01575 |
[22] |
Tan, Y.; Yin, Y.; Cao, S.; Zhao, X.; Qu, G.; Jiang, Z. Chin. J. Catal. 2022, 43, 558.
doi: 10.1016/S1872-2067(21)63887-1 |
[23] |
Lin, L.; Bai, X.; Ye, X.; Zhao, X.; Tan, C.-H.; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 13842.
doi: 10.1002/anie.201707899 |
[24] |
Qiao, B.; Li, C.; Zhao, X.; Yin, Y.; Jiang, Z. Chem. Commun. 2019, 55, 7534.
doi: 10.1039/C9CC03661J |
[25] |
Hou, M.; Lin, L.; Chai, X.; Zhao, X.; Qiao, B.; Jiang, Z. Chem. Sci. 2019, 10, 6629.
doi: 10.1039/C9SC02000D |
[26] |
Shao, T.; Li, Y.; Ma, N.; Li, C.; Chai, G.; Zhao, X.; Qiao, B.; Jiang, Z. iScience 2019, 16, 410.
doi: 10.1016/j.isci.2019.06.007 |
[27] |
Yin, Y.; Li, Y.; Gonçalves, T. P.; Zhan, Q.; Wang, G.; Zhao, X.; Qiao, B.; Huang, K.-W.; Jiang, Z. J. Am. Chem. Soc. 2020, 142, 19451.
doi: 10.1021/jacs.0c08329 |
[28] |
Li, J.; Kong, M.; Qiao, B.; Lee, R.; Zhao, X.; Jiang, Z. Nat. Commun. 2018, 9, 2445.
doi: 10.1038/s41467-018-04885-3 |
[29] |
Nicewicz, D. A. D.; MacMillan, W. C. Science 2008, 322, 77.
doi: 10.1126/science.1161976 pmid: 18772399 |
[30] |
Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600.
doi: 10.1021/ja106593m |
[31] |
Nacsa, E. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 3322.
doi: 10.1021/jacs.7b12768 pmid: 29400958 |
[32] |
Hepburn, H. B.; Melchiorre, P. Chem. Commun. 2016, 52, 3520.
doi: 10.1039/C5CC10401G |
[33] |
Chai, X.; Hu, X.; Zhao, X.; Yin, Y.; Cao, S.; Jiang, Z. Angew. Chem., Int. Ed. 2022, 61, e202115110.
|
[34] |
(a) Ajitha, M. J.; Huang, K.-W. Synthesis 2016, 48, 3449.
doi: 10.1055/s-0035-1562475 |
(b) Zhao, X.; Zhu, B.; Jiang, Z. Synlett 2015, 26, 2216.
doi: 10.1055/s-0034-1378865 |
|
(c) Tan, B.; Lu, Y.; Zeng, X.; Chua, P. J.; Zhong, G. Org. Lett. 2010, 12, 2682.
doi: 10.1021/ol1007795 |
|
(d) Zhu, B.; Zhang, W.; Richmond, L.; Han, Z.; Yang, W.; Tan, D.; Huang, K.-W.; Jiang, Z. Angew. Chem., Int. Ed. 2013, 52, 6666.
doi: 10.1002/anie.201302274 |
|
[35] |
Wang, S.; Li, X.; Liu, H.; Xu, L.; Zhuang, J.; Li, J.; Li, H.; Wang, W. J. Am. Chem. Soc. 2015, 137, 2303.
|
[36] |
(a) Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 7249.
doi: 10.1039/c3cc42695e pmid: 28346716 |
(b) Miyazawa, K.; Koike, T.; Akita, M. Adv. Synth. Catal. 2014, 356, 2749.
doi: 10.1002/adsc.201400556 pmid: 28346716 |
|
(c) Nakajima, M.; Lefebvre, Q.; Rueping, M. Chem. Commun. 2014, 50, 3619.
doi: 10.1039/c4cc00753k pmid: 28346716 |
|
(d) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
doi: 10.1002/anie.201709690 pmid: 28346716 |
|
(e) Capaldo, L.; Fagnoni, M.; Ravelli, D. Chem.-Eur. J. 2017, 23, 6527.
doi: 10.1002/chem.201701346 pmid: 28346716 |
|
(f) Lee, K. N.; Lei, Z.; Ngai, M.-Y. J. Am. Chem. Soc. 2017, 139, 5003.
doi: 10.1021/jacs.7b01373 pmid: 28346716 |
|
[37] |
Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia, H.; Zhao, X.; Qiao, B.; Jiang, Z. J. Am. Chem. Soc. 2019, 141, 5437.
doi: 10.1021/jacs.9b00286 |
[38] |
(a) Streuff, J. Synthesis 2013, 45, 281.
doi: 10.1055/s-0032-1316840 pmid: 22175347 |
(b) Ardisson, J.; Férézou, J. P.; Julia, M.; Pancrazi, A. Tetrahedron Lett. 1987, 28, 2001.
doi: 10.1016/S0040-4039(00)96030-1 pmid: 22175347 |
|
(c) Corey, E. J.; Pyne, S. G. Tetrahedron Lett. 1983, 24, 2821.
doi: 10.1016/S0040-4039(00)88033-8 pmid: 22175347 |
|
(d) Beckwith, A. L. J.; Roberts, D. H. J. Am. Chem. Soc. 1986, 108, 5893.
doi: 10.1021/ja00279a039 pmid: 22175347 |
|
(e) Porter, N. A.; Chang, V. H.-T.; Magnin, D. R.; Wright, B. T. J. Am. Chem. Soc. 1988, 110, 3554.
doi: 10.1021/ja00219a034 pmid: 22175347 |
|
(f) Enholm, E. J.; Prasad, G. Tetrahedron Lett. 1989, 30, 4939.
doi: 10.1016/S0040-4039(01)80548-7 pmid: 22175347 |
|
(g) Enholm, E. J.; Burroff, J. A. Tetrahedron Lett. 1992, 33, 1835.
doi: 10.1016/S0040-4039(00)74155-4 pmid: 22175347 |
|
(h) Hays, D. S.; Fu, G. C. J. Org. Chem. 1996, 61, 4.
doi: 10.1021/jo951827s pmid: 22175347 |
|
(i) Mikami, K.; Yamaoka, M. Tetrahedron Lett. 1998, 39, 4501.
doi: 10.1016/S0040-4039(98)00799-0 pmid: 22175347 |
|
(j) Tripp, J. C.; Schiesser, C. H.; Curran, D. P. J. Am. Chem. Soc. 2005, 127, 5518.
doi: 10.1021/ja042595u pmid: 22175347 |
|
(k) Hays, D. S.; Fu, G. C. J. Org. Chem. 1998, 63, 6375.
doi: 10.1021/jo9809130 pmid: 22175347 |
|
(l) Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 5763.
doi: 10.1016/S0040-4039(00)85320-4 pmid: 22175347 |
|
(m) Molander, G. A.; Kenny, C. J. Am. Chem. Soc. 1989, 111, 8236.
doi: 10.1021/ja00203a027 pmid: 22175347 |
|
(n) Corey, E. J.; Zheng, G. Z. Tetrahedron Lett. 1997, 38, 2045.
doi: 10.1016/S0040-4039(97)00263-3 pmid: 22175347 |
|
(o) Cossy, J.; Belotti, D. Tetrahedron 2006, 62, 6459.
doi: 10.1016/j.tet.2006.03.062 pmid: 22175347 |
|
[39] |
Guo, Z.; Chen, X.; Fang, H.; Zhao, X.; Jiang, Z. Sci. China: Chem. 2021, 64, 1522.
|
[40] |
Kong, M.; Tan, Y.; Zhao, X.; Qiao, B.; Tan, C.-H.; Cao, S.; Jiang, Z. J. Am. Chem. Soc. 2021, 143, 4024.
doi: 10.1021/jacs.1c01073 |
[41] |
Hu, W.; Zhan, Q.; Zhou, H.; Cao, S.; Jiang, Z. Chem. Sci. 2021, 12, 6543.
doi: 10.1039/D1SC01470F |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[5] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[6] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[7] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[8] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[9] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[10] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
[11] | 刘静, 郝健, 沈其龙. 可见光促进的含色氨酸寡肽与YlideFluor试剂的直接三氟甲基化反应研究[J]. 有机化学, 2023, 43(4): 1517-1524. |
[12] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[13] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[14] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[15] | 汤娟, 胡家榆, 祝志强, 蒲守智. 可见光诱导有机膦促进脱氧官能化反应研究进展[J]. 有机化学, 2023, 43(12): 4036-4056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||