有机化学 ›› 2023, Vol. 43 ›› Issue (8): 2800-2807.DOI: 10.6023/cjoc202302008 上一篇 下一篇
研究论文
陈乡萍a, 孟晨湘b, 李梦娜b, 楚尚敏b, 朱欣欣b, 许凯b,*(), 刘澜涛b,c,*(), 王涛b, 张凤华a, 李飞a,*()
收稿日期:
2023-02-09
修回日期:
2023-04-09
发布日期:
2023-04-26
基金资助:
Xiangping Chena, Chenxiang Mengb, Mengna Lib, Shangmin Chub, Xinxin Zhub, Kai Xub(), Lantao Liub,c(), Tao Wangb, Fenghua Zhanga, Fei Lia()
Received:
2023-02-09
Revised:
2023-04-09
Published:
2023-04-26
Contact:
*E-mail: Supported by:
文章分享
水相中在抗坏血酸钠的促进下, 铁催化硝基取代的芳基氟代物与硫酚合成含硫芳香伯胺化合物. 该方法可构建C—S键并原位还原硝基. 这种水相中“一锅”两步反应的显著特点包括直接使用毒性较低的铁催化剂和天然存在的抗坏血酸钠添加剂, 得到中等至优秀的收率, 表现出良好的官能团耐受性以及可扩量能力.
陈乡萍, 孟晨湘, 李梦娜, 楚尚敏, 朱欣欣, 许凯, 刘澜涛, 王涛, 张凤华, 李飞. 水相中抗坏血酸钠促进铁催化合成含硫芳香伯胺化合物[J]. 有机化学, 2023, 43(8): 2800-2807.
Xiangping Chen, Chenxiang Meng, Mengna Li, Shangmin Chu, Xinxin Zhu, Kai Xu, Lantao Liu, Tao Wang, Fenghua Zhang, Fei Li. Fe-Catalyzed Synthesis of Sulfide-Based Aromatic Primary Amines in Water Promoted by Sodium-Ascorbate[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2800-2807.
Entry | Deviation from the model conditions | Yield b/% |
---|---|---|
1 | None | 88 |
2 | Fe(acac)3 (5 mol%), 2,2'-bpy (5 mol%) | 83 |
3 | No Fe(acac)3, no 2,2'-bpy | 17 |
4 | FeCl2 instead of Fe(acac)3 | 75 |
5 | FeCl3 instead of Fe(acac)3 | 45 |
6 | Fe(OAc)2 instead of Fe(acac)3 | 72 |
7 | 1,10-Phenanthroline instead of 2,2'-bpy | 76 |
8 | Cs2CO3 instead of K2CO3 | 70 |
9 | K3PO4 instead of K2CO3 | 53 |
10 | KOAc instead of K2CO3 | 44 |
11 | No Na-ascorbate | 20 |
12 | Na-erythorbate instead of Na-ascorbate | 74 |
13 | AscH2 instead of Na-ascorbate | 48 |
14 | TBAI instead of TBAB | 86 |
15 | TBAC instead of TBAB | 71 |
16 | DMF, DMSO, toluene, 1,4-dioxane, CH3CN, DCE, CH3CH2OH instead of H2O | 62/61/27/ 28/11/<5/8 |
17 | Air atmosphere | 69 |
18 | Room temperature | <5 |
Entry | Deviation from the model conditions | Yield b/% |
---|---|---|
1 | None | 88 |
2 | Fe(acac)3 (5 mol%), 2,2'-bpy (5 mol%) | 83 |
3 | No Fe(acac)3, no 2,2'-bpy | 17 |
4 | FeCl2 instead of Fe(acac)3 | 75 |
5 | FeCl3 instead of Fe(acac)3 | 45 |
6 | Fe(OAc)2 instead of Fe(acac)3 | 72 |
7 | 1,10-Phenanthroline instead of 2,2'-bpy | 76 |
8 | Cs2CO3 instead of K2CO3 | 70 |
9 | K3PO4 instead of K2CO3 | 53 |
10 | KOAc instead of K2CO3 | 44 |
11 | No Na-ascorbate | 20 |
12 | Na-erythorbate instead of Na-ascorbate | 74 |
13 | AscH2 instead of Na-ascorbate | 48 |
14 | TBAI instead of TBAB | 86 |
15 | TBAC instead of TBAB | 71 |
16 | DMF, DMSO, toluene, 1,4-dioxane, CH3CN, DCE, CH3CH2OH instead of H2O | 62/61/27/ 28/11/<5/8 |
17 | Air atmosphere | 69 |
18 | Room temperature | <5 |
[1] |
For reviews, see: (a) Kim, Y.; Li, C. J. Green Synth. Catal. 2020, 1, 1.
pmid: 23529409 |
(b) Gawande, M. B.; Bonifácio, V. D.; Luque, R.; Branco, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 5522.
doi: 10.1039/c3cs60025d pmid: 23529409 |
|
(c) Bauer, I.; Knölke, H. J. Chem. Rev. 2015, 115, 3170.
doi: 10.1021/cr500425u pmid: 23529409 |
|
(d) Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Chem. Rev. 2022, 122, 3637.
doi: 10.1021/acs.chemrev.1c00631 pmid: 23529409 |
|
[2] |
(a) Wienhofer, G.; Baseda-Kruger, M.; Ziebart, C.; Westerhaus, F. A.; Baumann, W.; Jackstell, R.; Junge, K.; Beller, M. Chem. Commun. 2013, 49, 9089.
doi: 10.1039/c3cc42983k pmid: 30516963 |
(b) Feng, H. D.; Li, Y.; Lin, S. J.; Eycken, E.; Song, G. H. Sustain. Chem. Process 2014, 2, 14.
doi: 10.1186/2043-7129-2-14 pmid: 30516963 |
|
(c) Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Chem. Rev. 2019, 119, 2611.
doi: 10.1021/acs.chemrev.8b00547 pmid: 30516963 |
|
(d) Rahman, T.; Borah, G.; Gogoi, P. K. J. Chem. Sci. 2021, 133, 1
doi: 10.1007/s12039-020-01869-z pmid: 30516963 |
|
(e) Vengatesh, G.; Nanjan, P. Curr. Org. Chem. 2022, 26, 1.
doi: 10.2174/138527282601211228161129 pmid: 30516963 |
|
(f) Zhang, Z. G.; Li, J. L.; Zhang, G. S.; Ma, N. N.; Liu, Q. F.; Liu, T. X. J. Org. Chem. 2015, 80, 6875.
doi: 10.1021/acs.joc.5b00915 pmid: 30516963 |
|
(g) Wei, D.; Darcel, C. Chem. Rev. 2019, 119, 2550.
doi: 10.1021/acs.chemrev.8b00372 pmid: 30516963 |
|
(h) Guo, N.; Zhu, S. F. Chin. J. Org. Chem. 2015, 35, 1383. (in Chinese)
pmid: 30516963 |
|
( 郭娜, 朱守非, 有机化学, 2015, 35, 1383.)
doi: 10.6023/cjoc201502032 pmid: 30516963 |
|
(i) Li, J. H.; Liu, K. M.; Duan, X. F.; Liu, J. B. Chin. J. Org. Chem. 2017, 37, 314. (in Chinese)
doi: 10.6023/cjoc201608009 pmid: 30516963 |
|
( 李娟华, 刘昆明, 段新方, 刘晋彪, 有机化学, 2017, 37, 314.)
doi: 10.6023/cjoc201608009 pmid: 30516963 |
|
[3] |
(a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
doi: 10.2174/1568026615666150915111741 pmid: 28418240 |
(b) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
doi: 10.1002/anie.201604615 pmid: 28418240 |
|
(c) Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521.
doi: 10.1021/acs.chemrev.6b00697 pmid: 28418240 |
|
(d) Du, X.; Kleitz, F.; Li, X.; Huang, H.; Zhang, X.; Qiao, S. Z. Adv. Funct. Mater. 2018, 28, 1707325.
doi: 10.1002/adfm.v28.26 pmid: 28418240 |
|
[4] |
(a) Wrobel, Z. Tetrahedron 2003, 59, 101.
doi: 10.1016/S0040-4020(02)01454-0 |
(b) Clark, R. D.; Jahangir, A.; Severance, D.; Salazar, R.; Chang, T.; Chang, D.; Jett, M. F.; Smith, S.; Bley, K. Bioorg. Med. Chem. Lett. 2004, 14, 1053.
doi: 10.1016/j.bmcl.2003.10.070 |
|
(c) Jarkas, N.; McConathy, J.; Voll, R. J.; Goodman, M. M. J. Med. Chem. 2005, 48, 4254.
doi: 10.1021/jm050079o |
|
[5] |
For the construction of C—S bonds, see: (a) Ravi, V.; Mujahid, A. M.; Srinivas, R. A. Chem. Lett. 2004, 33, 1614.
doi: 10.1246/cl.2004.1614 pmid: 19154131 |
(b) Ranu, B. C.; Ranjan Jana, A. S. Adv. Synth. Catal. 2007, 349, 2690.
doi: 10.1002/adsc.v349:17/18 pmid: 19154131 |
|
(c) Fernández-Rodríguez, M. A.; Hartwig, J. F. J. Org. Chem. 2009, 74, 1663.
doi: 10.1021/jo802594d pmid: 19154131 |
|
(d) Velmathi, S.; Vijayaraghavan, R.; Amarendar, C.; Pal, R. P.; Vinu, A. Synlett 2010, 18, 2733.
pmid: 19154131 |
|
(e) Su, K.; Qiu, Y. T.; Yao, Y. W.; Zhang, D. Y.; Jiang, S. Synlett 2012, 23, 2853.
doi: 10.1055/s-00000083 pmid: 19154131 |
|
(f) Mohammadinezhad, A.; Akhlaghinia, B. New J. Chem. 2019, 43, 15525.
doi: 10.1039/c9nj03400e pmid: 19154131 |
|
(g) Wang, H. F.; Jiang, L. L.; Chen, T.; Li, Y. M. Eur. J. Org. Chem. 2019, 2019, 2138.
doi: 10.1002/ejoc.201801678 pmid: 19154131 |
|
(h) Martín, M. T.; Marín, M.; Maya, C.; Prieto, A.; Nicasio, M. C. Chem. - Eur. J. 2021, 27, 12320.
doi: 10.1002/chem.v27.48 pmid: 19154131 |
|
(i) Zhang, W. G.; Huang, M. J.; Zou, Z. L.; Wu, Z. G.; Ni, S. Y.; Kong, L. Y.; Zheng, Y. X.; Wang, Y.; Pan, Y. Chem. Sci. 2021, 12, 2509.
doi: 10.1039/D0SC06446G pmid: 19154131 |
|
(j) Fang, X. L.; Tang, R. Y.; Zhang, X. G.; Li, J. H. Synthesis 2011, 7, 1099.
pmid: 19154131 |
|
(k) Lin, Y. M.; Lu, G. P.; Wang, G. X.; Yi, W. B. Adv. Synth. Catal. 2016, 358, 4100.
doi: 10.1002/adsc.201600846 pmid: 19154131 |
|
(l) Raghuvanshi, D. S.; Verma, N. RSC Adv. 2017, 7, 22860.
doi: 10.1039/C7RA02350B pmid: 19154131 |
|
(m) Wei, Y. T.; Liu, Y. L.; He, J.; Li, X. Z.; Liu, P.; Zhang, J. Tetrahedron 2020, 76, 131646.
doi: 10.1016/j.tet.2020.131646 pmid: 19154131 |
|
(n) Jiang, X. P.; Shen, Z. F.; Zheng, C.; Fang, L. Y.; Chen, K. D.; Yu, C. M. Tetrahedron Lett. 2020, 61, 152141.
doi: 10.1016/j.tetlet.2020.152141 pmid: 19154131 |
|
(o) Zhao, W. Q.; Zhang, F.; Deng, G. J. J. Org. Chem. 2021, 86, 291.
doi: 10.1021/acs.joc.0c02078 pmid: 19154131 |
|
[6] |
For the reduction of nitro compounds, see: (a) Braunerová, G.; Buchta, V.; Silva, L.; Kuneš, J.; Palát, K., Jr Farmaco 2004, 59, 443.
pmid: 15178306 |
(b) Guo, Z. B.; Wang, R. F.; Guo, Y. Y.; Jiang, J. W.; Wang, Z. Q.; Li, W.; Zhang, M. H. ACS Catal. 2022, 12, 15193.
doi: 10.1021/acscatal.2c04951 pmid: 15178306 |
|
[7] |
For reviews, see: (a) Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, S. Org. Process Res. Dev. 2018, 22, 430.
doi: 10.1021/acs.oprd.6b00205 pmid: 30516963 |
(b) Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Chem. Rev. 2019, 119, 2611.
doi: 10.1021/acs.chemrev.8b00547 pmid: 30516963 |
|
(c) Ferretti, F.; Ramadan, D. R.; Ragaini, F. ChemCatChem 2019, 11, 4450.
doi: 10.1002/cctc.v11.18 pmid: 30516963 |
|
[8] |
(a) Hudson, R.; Hamasaka, G.; Osako, T.; Yamada, Y. M. A.; Li, C. J.; Uozumi, Y.; Moores, A. Green Chem. 2013, 15, 2141.
doi: 10.1039/c3gc40789f pmid: 29775290 |
(b) Zhao, Z. K.; Yang, H. L.; Li, Y.; Guo, X. W. Green Chem. 2014, 16, 1274.
doi: 10.1039/C3GC42049C pmid: 29775290 |
|
(c) Cheung, C. W.; Ploeger, M. L.; Hu, X. L. ACS Catal. 2017, 7, 7092.
doi: 10.1021/acscatal.7b02859 pmid: 29775290 |
|
(d) Cheung, C. W.; Ploeger, M. L.; Hu, X. L. Chem. Sci. 2018, 9, 655.
doi: 10.1039/c7sc03950f pmid: 29775290 |
|
(e) Cheung, C. W.; Ma, J. A.; Hu, X. L. J. Am. Chem. Soc. 2018, 140, 6789.
doi: 10.1021/jacs.8b03739 pmid: 29775290 |
|
(f) Cheung, C. W.; Shen, N.; Wang, S. P.; Ullah, A.; Hu, X. L.; Ma, J. A. Org. Chem. Front. 2019, 6, 756.
doi: 10.1039/c8qo01405a pmid: 29775290 |
|
(g) He, H. D.; Zhang, Z. K.; Tang, H. B.; Xu, Y. Q.; Xu, X. B.; Cao, Z. Y.; Xu, H.; Li, Y. Org. Chem. Front. 2022, 9, 4875.
doi: 10.1039/D2QO00928E pmid: 29775290 |
|
(h) Liu, Y. Z.; Bao, Z. P.; Qi, X. X.; Wu, X. F. Org. Chem. Front. 2022, 9, 2079.
doi: 10.1039/D2QO00110A pmid: 29775290 |
|
[9] |
(a) Pesti, J.; Larson, G. L. Org. Process Res. Dev. 2016, 20, 1164.
doi: 10.1021/acs.oprd.6b00124 |
(b) Zhao, S. L.; Mankad, N. P. Org. Lett. 2019, 21, 10106.
doi: 10.1021/acs.orglett.9b04092 |
|
(c) Song, H.; Yang, Z. Y.; Tung, C. H.; Wang, W. G. ACS Catal. 2020, 10, 276.
doi: 10.1021/acscatal.9b03604 |
|
(d) Cao, Y.; Yang, S. M.; Huo, Y. P.; Hu, X. Q. Adv. Synth. Catal. 2020, 362, 3971.
doi: 10.1002/adsc.v362.19 |
|
(e) Qu, Z. H.; Chen, X.; Zhong, S.; Deng, G. J.; Huang, H. W. Org. Lett. 2021, 23, 5349.
doi: 10.1021/acs.orglett.1c01654 |
|
(f) Behera, R. R.; Panda, S.; Ghosh, R.; Kumar, A. A.; Bagh, B. Org. Lett. 2022, 24, 9179.
doi: 10.1021/acs.orglett.2c03576 |
|
(g) Li, Q. Y.; Dai, P.; Tang, H. D.; Zhang, M. L.; Wu, J. Chem. Sci. 2022, 13, 9361.
doi: 10.1039/D2SC03047K |
|
[10] |
(a) Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430.
doi: 10.1021/ol100816g |
(b) Li, Q. Y.; Dai, P.; Tang, H. D.; Zhang, M. L.; Wu, J. Chem. Sci. 2022, 13, 9361.
doi: 10.1039/D2SC03047K |
|
[11] |
(a) Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005, 70, 5014.
pmid: 15960500 |
(b) Bao, Z. W.; Lü, J.; Jin, Z. C. Chin. J. Org. Chem. 2021, 41, 4773. (in Chinese)
doi: 10.6023/cjoc202109037 pmid: 15960500 |
|
( 鲍兆伟, 吕洁, 金智超, 有机化学, 2021, 41, 4773.)
doi: 10.6023/cjoc202109037 pmid: 15960500 |
|
[12] |
(a) Wang, B.; Ma, J. W.; Ren, H. Y.; Lu, S.; Xu, J. K.; Liang, Y.; Lu, C. S. Chin. Chem. Lett. 2022, 33, 2420.
doi: 10.1016/j.cclet.2021.11.023 |
(b) Lu, H. T.; Geng, Z. Y.; Li, J. Y.; Zou, D. P.; Wu, Y. S.; Wu, Y. J. Org. Lett. 2016, 18, 2774.
doi: 10.1021/acs.orglett.6b01274 |
|
(c) Hosoya, H.; Castro, L. C. M.; Sultan, I.; Nakajima, Y.; Ohmura, T.; Sato, K.; Tsurugi, H.; Suginome, M.; Mashima, K. Org. Lett. 2019, 21, 9812.
doi: 10.1021/acs.orglett.9b03419 |
|
(d) Jang, M.; Lim, T.; Park, B. Y.; Han, M. S. J. Org. Chem. 2022, 87, 910.
doi: 10.1021/acs.joc.1c01431 |
|
[13] |
Jiang, H. M.; Qin, J. H.; Sun, Q.; Zhang, D.; Jiang, J. P.; Ouyang, X. H.; Song, R. J.; Li, J. H. Org. Chem. Front. 2022, 9, 4070.
doi: 10.1039/D2QO00706A |
[14] |
Sharma, S.; Kumar, M.; Kumar, V.; Kumar, N. J. Org. Chem. 2014, 79, 9433.
doi: 10.1021/jo5019415 |
[15] |
Kumar, M.; Sharma, U.; Sharma, S.; Kumar, V.; Singh, B.; Kumar, N. RSC Adv. 2013, 3, 4894.
doi: 10.1039/c3ra40771c |
[16] |
Todorov, A. R.; Aikonen, S.; Muuronen, M.; Helaja, J. Org. Lett. 2019, 21, 3764.
doi: 10.1021/acs.orglett.9b01205 |
[17] |
Xu, K.; Yang, F.; Zhang, G. D.; Wu, Y. J. Green Chem. 2013, 15, 1055.
doi: 10.1039/c3gc00030c |
[18] |
(a) Xu, K.; Li, Z. Y.; Cheng, F. Y.; Zuo, Z. Z.; Wang, T.; Wang, M. C.; Liu, L. T. Org. Lett. 2018, 20, 2228.
doi: 10.1021/acs.orglett.8b00573 |
(b) Liu, L. T.; Guo, Z. H.; Xu, K.; Hui, S. S.; Zhao, X. F.; Wu, Y. J. Org. Chem. Front. 2018, 5, 3315.
doi: 10.1039/C8QO00835C |
|
(c) Xu, K.; Xu, Z. L.; Zhang, M. Z.; Yan, X. X.; Mao, G. L.; Wang, T.; Wu, Y. J.; Liu, L. T. Org. Chem. Front. 2021, 8, 5831.
doi: 10.1039/D1QO00676B |
|
[19] |
Ouyang, K. B.; Xi, Z. F. Acta Chim. Sinica 2013, 71, 13. (in Chinese)
doi: 10.6023/A12110984 |
( 欧阳昆冰, 席振峰, 化学学报, 2013, 71, 13.)
doi: 10.6023/A12110984 |
|
[20] |
Xuan, M. J.; Lu, C. L.; Lin, B. L. Chin. Chem. Lett. 2020, 31, 84.
doi: 10.1016/j.cclet.2019.07.012 |
[21] |
Yang, D. S.; Yan, K. L.; Wei, W.; Zhao, J.; Zhang, M. Q.; Sheng, X. G.; Li, G. Q.; Lu, S. L.; Wang, H. J. Org. Chem. 2015, 80, 6083.
doi: 10.1021/acs.joc.5b00540 |
[22] |
Panova, Y. S.; Kashin, A. S.; Vorobev, M. G.; Degtyareva, E. S.; Ananikov, V. P. ACS Catal. 2016, 6, 3637.
doi: 10.1021/acscatal.6b00337 |
[23] |
Xu, Z. B.; Lu, G. P.; Cai, C. Catal. Commun. 2017, 99, 57.
doi: 10.1016/j.catcom.2017.04.051 |
[24] |
Bai, R.; Dabaria, K. K.; Badsara, S. S. Synthesis 2022, 54, 2487.
doi: 10.1055/a-1730-8186 |
[25] |
Nie, S. Z.; Lu, A.; Kuker, E. L.; Dong, V. M. J. Am. Chem. Soc. 2021, 143, 6176.
doi: 10.1021/jacs.1c00939 |
[26] |
Pan, L.; Cooke, M. V.; Spencer, A.; Laulhé, S. Adv. Synth. Catal. 2022, 364, 420.
doi: 10.1002/adsc.v364.2 |
[27] |
Davis, F. A.; Horner, C. J.; Fretz, E. R.; Stackhouse, J. F. J. Org. Chem. 1973, 38, 695.
doi: 10.1021/jo00944a017 |
[28] |
Ham, J.; Cho, S. J.; Ko, J.; Chin, J.; Kang, H. J. Org. Chem. 2006, 71, 5781.
doi: 10.1021/jo060361i |
[29] |
Ricordi, V. G.; Thurow, S.; Penteado, F.; Schumacher, R. F.; Perin, G.; Lenardão, E. J.; Alves, D. Adv. Synth. Catal. 2015, 357, 933.
doi: 10.1002/adsc.v357.5 |
[1] | 李洋, 董亚楠, 李跃辉. 经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物[J]. 有机化学, 2024, 44(2): 638-643. |
[2] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[3] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[4] | 刘继宇, 李圣玉, 陈款, 朱茵, 张元. 三苯胺功能化有序介孔聚合物作为无金属光催化剂用于二硫化物合成[J]. 有机化学, 2024, 44(2): 605-612. |
[5] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[6] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[7] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[8] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[9] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[10] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[11] | 孟宪强, 杨艺, 梁万洁, 王靖涛, 张荣葵, 刘会. 钯催化联烯胺区域选择性芳基酚氧化反应[J]. 有机化学, 2024, 44(1): 224-231. |
[12] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[13] | 李梦竹, 孟博莹, 兰文捷, 傅滨. 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024, 44(1): 195-203. |
[14] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[15] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||