有机化学 ›› 2023, Vol. 43 ›› Issue (1): 57-73.DOI: 10.6023/cjoc202207006 上一篇 下一篇
综述与进展
刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝*()
收稿日期:
2022-07-04
修回日期:
2022-08-02
发布日期:
2022-09-15
通讯作者:
余富朝
基金资助:
Donghan Liu, Xihang Lu, Zhangmengjie Chai, Haoqi Yang, Yulin Sun, Fuchao Yu()
Received:
2022-07-04
Revised:
2022-08-02
Published:
2022-09-15
Contact:
Fuchao Yu
Supported by:
文章分享
2H-吡咯-2-酮作为一类重要的γ-内酰胺类化合物, 因其广泛存在于天然产物、药物和生物活性分子之中, 同时也是药物研发和有机合成中的主要合成中间体, 故备受有机合成工作者的关注. 近年来, 基于2H-吡咯-2-酮骨架包括1,5-二氢-2H-吡咯-2-酮的合成方法和策略取得了长足发展. 通过总结不同合成方法和策略, 分别对三类2H-吡咯-2-酮骨架的合成方法学的研究进展予以综述.
刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝. 构建2H-吡咯-2-酮骨架的研究进展[J]. 有机化学, 2023, 43(1): 57-73.
Donghan Liu, Xihang Lu, Zhangmengjie Chai, Haoqi Yang, Yulin Sun, Fuchao Yu. Progress in Construction of 2H-Pyrrol-2-ones Skeleton[J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 57-73.
Entry | R | X | Condition | Solvent | Yield | Time/h | Ref. |
---|---|---|---|---|---|---|---|
1 | DABCO•(SO2)2 or ArNH2 | OMe | blue LED, EY t-BuONO, 70 ℃, H2O | CH3CN | 55%~91% | 24 | [ |
2 | RSO2Cl | OR, SMe, F, Cl, Br, I | blue LED, EY; Na2CO3, 100 ℃, H2O | CH3CN | 68%~95% | 20 | [ |
3 | RSO4H or RSH | OMe | blue LED, Na2EY, r.t. or blue LED, EY, r.t. | CH3CN/H2O (V/V=1/1) | 37%~87% | 24 | [ |
4 | RSeSeR | MeO, F, H | blue LED, EY, O2, r.t. | CH3CN | 42%~92% | 24 | [ |
5 | NH4SCN | H | CFL LED, air, 35 ℃; Acr+-Mes– ClO4, AcOH | DCE | 40%~95% | 48 | [ |
6 | PIFA or KI | OMe | blue LED, NaOAc, r.t. or Xenon, NaOAc, r.t. | CH3CN | 52%~90% | 2 | [ |
Entry | R | X | Condition | Solvent | Yield | Time/h | Ref. |
---|---|---|---|---|---|---|---|
1 | DABCO•(SO2)2 or ArNH2 | OMe | blue LED, EY t-BuONO, 70 ℃, H2O | CH3CN | 55%~91% | 24 | [ |
2 | RSO2Cl | OR, SMe, F, Cl, Br, I | blue LED, EY; Na2CO3, 100 ℃, H2O | CH3CN | 68%~95% | 20 | [ |
3 | RSO4H or RSH | OMe | blue LED, Na2EY, r.t. or blue LED, EY, r.t. | CH3CN/H2O (V/V=1/1) | 37%~87% | 24 | [ |
4 | RSeSeR | MeO, F, H | blue LED, EY, O2, r.t. | CH3CN | 42%~92% | 24 | [ |
5 | NH4SCN | H | CFL LED, air, 35 ℃; Acr+-Mes– ClO4, AcOH | DCE | 40%~95% | 48 | [ |
6 | PIFA or KI | OMe | blue LED, NaOAc, r.t. or Xenon, NaOAc, r.t. | CH3CN | 52%~90% | 2 | [ |
[1] |
Yamazaki, T.; Matoba, K. Chem. Pharm. Bull. 1974, 22, 2999.
doi: 10.1248/cpb.22.2999 |
[2] |
Rajewski, J.; Lange, J.; Bocelli, G. Acta Crystallogr. 1984, 40, 108.
doi: 10.1107/S0108767384000246 |
[3] |
Rivas, F.; Ling, T. Org. Prep. Proced. Int. 2016, 48, 254.
doi: 10.1080/00304948.2016.1165059 |
[4] |
Caruano, J.; Muccioli, G. G.; Robiette, R. Org. Biomol. Chem. 2016, 14, 10134.
pmid: 27748489 |
[5] |
Furukawa, H.; Yakushijin, K.; Kozuka, M.; Ito, Y.; Suzuki, R. Heterocycles 1980, 14, 1073.
doi: 10.3987/R-1980-08-1073 |
[6] |
Snider, B. B.; Neubert, B. J.; Hart, C. J. Org. Chem. 2004, 69, 8952.
pmid: 15575782 |
[7] |
Fu, P.; Kong, F.; Li, X.; Wang, Y.; Zhu, W. Org. Lett. 2014, 16, 3708.
doi: 10.1021/ol501523d |
[8] |
Feng, Z.; Chu, F.; Guo, Z.; Sun, P. Bioorg. Med. Chem. Lett. 2009, 19, 2270.
doi: 10.1016/j.bmcl.2009.02.090 |
[9] |
Durán, N.; Justo, G. Z.; Ferreira, C. V.; Melo, P. S.; Cordi, L.; Martins, D. Biotechnol. Appl. Biochem. 2007, 48, 127.
doi: 10.1042/BA20070115 |
[10] |
Gurjar, M. K.; Joshi, R. A.; Chaudhuri, S. R.; Joshi, S. V.; Barde, A. R.; Gediya, L. K.; Ranade, P. V.; Kadam, S. M.; Naik, S. J. Tetrahedron Lett. 2003, 44, 4853.
doi: 10.1016/S0040-4039(03)01145-6 |
[11] |
Wang, L.; Xin, S.; Tang, H.; Cao, D. Chin. J. Org. Chem. 2020, 40, 4155. (in Chinese)
doi: 10.6023/cjoc202005041 |
(汪凌云, 辛舒琪, 唐浩, 曹德榕, 有机化学, 2020, 40, 4155.)
doi: 10.6023/cjoc202005041 |
|
[12] |
Luo, X.; Shu, M.; Wang, Y.; Liu, J.; Yang, W.; Lin, Z. Molecules 2012, 17, 2015.
doi: 10.3390/molecules17022015 |
[13] |
Lampe, J. W.; Chou, Y. L.; Hanna, R. G.; Di Meo, S. V.; Erhardt, P. W.; Hagedorn, A. A.; Ingebretsen, W. R.; Cantor, E. J. Med. Chem. 1993, 36, 1041.
pmid: 8386770 |
[14] |
Kawasuji, T.; Fuji, M.; Yoshinaga, T.; Sato, A.; Fujiwara, T.; Kiyama, R. Bioorg. Med. Chem. 2007, 15, 5487.
doi: 10.1016/j.bmc.2007.05.052 |
[15] |
Peifer, C.; Selig, R.; Kinkel, K.; Ott, D.; Totzke, F.; Schächtele, C.; Heidenreich, R.; Röcken, M.; Schollmeyer, D.; Laufer, S. J. Med. Chem. 2008, 51, 3814.
doi: 10.1021/jm8001185 |
[16] |
Miyazaki, H.; Miyake, T.; Terakawa, Y.; Ohmizu, H.; Ogiku, T.; Ohtani, A. Bioorg. Med. Chem. Lett. 2010, 20, 546.
doi: 10.1016/j.bmcl.2009.11.102 pmid: 19969458 |
[17] |
Shi, W.; Duan, Y.; Qian, Y.; Li, M.; Yang, L.; Hu, W. Bioorg. Med. Chem. Lett. 2010, 20, 3592.
doi: 10.1016/j.bmcl.2010.04.123 |
[18] |
Li, W. R.; Lin, S. T.; Hsu, N. M.; Chern, M. S. J. Org. Chem. 2002, 67, 4702.
doi: 10.1021/jo010828j |
[19] |
Lv, L.; Zheng, S.; Cai, X.; Chen, Z.; Zhu, Q.; Liu, S. ACS Comb. Sci. 2013, 15, 183.
doi: 10.1021/co300148c |
[20] |
Alves, A. J. S.; Alves, N. G.; Soares, M. I. L.; Pinho, E.; Melo, T. M. V. D. Org. Chem. Front. 2021, 8, 3543.
doi: 10.1039/D0QO01564D |
[21] |
Song, R.; Xie, Y. Chin. J. Chem. 2017, 35, 280.
doi: 10.1002/cjoc.201600846 |
[22] |
Wei, W. T.; Song, R. J.; Ouyang, X. H.; Li, Y.; Li, H. B.; Li, J. H. Org. Chem. Front. 2014, 1, 484.
doi: 10.1039/c4qo00006d |
[23] |
Qian, P. C.; Liu, Y.; Song, R. J.; Xiang, J. N.; Li, J. H. Synlett 2015, 26, 1213.
doi: 10.1055/s-0034-1380573 |
[24] |
Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. J. Mater. Chem. C 2015, 3, 10715.
doi: 10.1039/C5TC02043C |
[25] |
Gao, P.; Zhang, W.; Zhang, Z. Org. Lett. 2016, 18, 5820.
doi: 10.1021/acs.orglett.6b02781 |
[26] |
Mardjan, M. I. D.; Parrain, J. L.; Commeiras, L. Adv. Synth. Catal. 2016, 358, 543.
doi: 10.1002/adsc.201500994 |
[27] |
Tan, Q. W.; Chovatia, P.; Willis, M. C. Org. Biomol. Chem. 2018, 16, 7797.
doi: 10.1039/C8OB02205D |
[28] |
Sarkar, R.; Mukhopadhyay, C. Tetrahedron Lett. 2018, 59, 3069.
doi: 10.1016/j.tetlet.2018.06.061 |
[29] |
Luo, Y.; Lu, X.; Ye, Y.; Guo, Y.; Jiang, H.; Zeng, W. Org. Lett. 2012, 14, 5640.
doi: 10.1021/ol302483f |
[30] |
Chen, Z.; Wang, L.; Wu, X. F. Chem. Commun. 2020, 56, 6016.
doi: 10.1039/D0CC01504K |
[31] |
Ying, J.; Le, Z.; Bao, Z. P.; Wu, X. F. Org. Chem. Front. 2020, 7, 1006.
doi: 10.1039/D0QO00007H |
[32] |
Pan, F.; Lei, Z. Q.; Wang, H.; Li, H.; Sun, J.; Shi, Z. J. Angew. Chem., Int. Ed. 2013, 52, 2063.
doi: 10.1002/anie.201208362 |
[33] |
Liang, H. W.; Ding, W.; Jiang, K.; Shuai, L.; Yuan, Y.; Wei, Y.; Chen, Y. C. Org. Lett. 2015, 17, 2764.
doi: 10.1021/acs.orglett.5b01185 |
[34] |
Huang, J.; Zheng, J.; Wu, W.; Li, J.; Ma, Z.; Ren, Y.; Jiang, H. J. Org. Chem. 2017, 82, 8191.
doi: 10.1021/acs.joc.7b00804 |
[35] |
Ying, J.; Le, Z.; Wu, X. F. Org. Lett. 2020, 22, 194.
doi: 10.1021/acs.orglett.9b04147 pmid: 31858806 |
[36] |
Lin, C.; Zhang, J.; Chen, Z.; Liu, Y.; Liu, Z.; Zhang, Y. Adv. Synth. Catal. 2016, 358, 1778.
doi: 10.1002/adsc.201600080 |
[37] |
Li, M.; Song, R. J.; Li, J. H. Chin. J. Chem. 2017, 35, 299.
doi: 10.1002/cjoc.201600749 |
[38] |
Wen, L. R.; Wang, N. N.; Du, W. B.; Ma, Q.; Zhang, L. B.; Li, M. Org. Biomol. Chem. 2021, 19, 2895.
doi: 10.1039/D1OB00139F |
[39] |
Ku, I. W.; Kang, S. B.; Keum, G.; Kim, Y. Bull. Korean Chem. Soc. 2011, 32, 3167.
doi: 10.5012/bkcs.2011.32.8.3167 |
[40] |
Hou, W.; Zhou, B.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2013, 15, 1814.
doi: 10.1021/ol4003674 |
[41] |
Wang, S. G.; Liu, Y.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 18136.
doi: 10.1002/anie.201909971 |
[42] |
Ran, R. Q.; He, J.; Xiu, S. D.; Wang, K. B.; Li, C. Y. Org. Lett. 2014, 16, 3704.
doi: 10.1021/ol501514b |
[43] |
Martinez-Alsina, L. A.; Murray, J. C.; Buzon, L. M.; Bundesmann, M. W.; Young, J. M.; O’Neill, B. T. J. Org. Chem. 2017, 82, 12246.
doi: 10.1021/acs.joc.7b02096 pmid: 29096057 |
[44] |
Fábian, M.; Gonda, J.; Jacková, D.; Martinková, M.; Pilátová, M. B.; Jáger, D. Tetrahedron 2020, 76, 131144.
doi: 10.1016/j.tet.2020.131144 |
[45] |
Shen, L. Synthesis 2020, 52, 1969.
doi: 10.1055/s-0039-1690848 |
[46] |
Boobalan, R.; Santhoshkumar, R.; Cheng, C. H. Adv. Synth. Catal. 2019, 361, 1140.
doi: 10.1002/adsc.201801335 |
[47] |
Ghashang, M.; Shaterian, H. R. Chin. J. Chem. 2011, 29, 1851.
doi: 10.1002/cjoc.201180323 |
[48] |
Nagarajan, A. S.; Reddy, B. S. R. Synth. Commun. 2013, 43, 1229.
doi: 10.1080/00397911.2011.628774 |
[49] |
Wu, L. J.; Tan, F. L.; Li, M.; Song, R. J.; Li, J. H. Org. Chem. Front. 2017, 4, 350.
doi: 10.1039/C6QO00691D |
[50] |
Wang, C.; Zhu, S.; Wang, G.; Li, Z.; Hui, X. Eur. J. Org. Chem. 2016, 34, 5653.
|
[51] |
Sun, J.; Wu, Q.; Xia, E. Y.; Yan, C. G. Eur. J. Org. Chem. 2011, 16, 2981.
|
[52] |
Khan, M. M.; Khan, S.; Saigal; Sahoo, S. C. ChemistrySelect 2018, 3, 1371.
doi: 10.1002/slct.201702933 |
[53] |
Del Corte, X.; López-Francés, A.; Maestro, A.; De Marigorta, E. M.; Palacios, F.; Vicario, J.; Palacios, F. J. Org. Chem. 2020, 85, 14369.
doi: 10.1021/acs.joc.0c00280 |
[54] |
Kulakov, I. V.; Nikolaenkova, E. B.; Gatilov, Y. V.; Tikhonov, A. Y.; Fisyuk, A. S. Tetrahedron Lett. 2015, 56, 5980.
doi: 10.1016/j.tetlet.2015.09.030 |
[55] |
Zhao, Y.; Xiao, Q.; Wang, B.; Lin, J.; Yan, S. Chin. J. Org. Chem. 2017, 37, 2690. (in Chinese)
|
(赵宇澄, 肖强, 王保取, 林军, 严胜骄, 有机化学, 2017, 37, 2690.)
doi: 10.6023/cjoc201705004 |
|
[56] |
Chen, T.; Zheng, X.; Wang, W.; Feng, Y.; Wang, Y.; Shen, J. J. Org. Chem. 2021, 86, 2917.
doi: 10.1021/acs.joc.0c02832 |
[57] |
Tang, Y.; Lv, M.; Liu, X.; Feng, H.; Liu, L. Org. Lett. 2013, 15, 1382.
doi: 10.1021/ol400208f pmid: 23461722 |
[58] |
Jacinto, M. P.; Pichling, P.; Greenberg, M. M. Org. Lett. 2018, 20, 4885.
doi: 10.1021/acs.orglett.8b02030 pmid: 30063360 |
[59] |
Stevens, A. J.; Guan, L.; Bebenek, K.; Kunkel, T. A.; Greenberg, M. M. Biochemistry 2013, 52, 975.
doi: 10.1021/bi301592x pmid: 23330920 |
[60] |
Zhang, Y.; Zhou, X.; Xie, Y.; Greenberg, M. M.; Xi, Z.; Zhou, C. J. Am. Chem. Soc. 2017, 139, 6146.
doi: 10.1021/jacs.7b00670 |
[61] |
Liu, D.; Lu, X.; Zhang, Q.; Zhao, Y.; Zhang, B.; Sun, Y.; Dai, W.; Xu, Y.; Yu, F. Org. Chem. Front. 2022, 9, 4078.
doi: 10.1039/D2QO00473A |
[62] |
Liu, Y.; Wang, Q. L.; Chen, Z.; Zhou, Q.; Xiong, B. Q.; Zhang, P. L.; Tang, K. W. Chem. Commun. 2019, 55, 12212.
doi: 10.1039/C9CC05949K |
[63] |
Liu, Y.; Wang, Q. L.; Xiong, B. Q.; Zhang, P. L.; Yang, C. A.; Gong, Y. X.; Liao, J.; Zhou, Q. Synlett 2018, 29, 2396.
doi: 10.1055/s-0037-1609948 |
[64] |
Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
doi: 10.1039/C7GC02330H |
[65] |
Sahoo, H.; Mandal, A.; Dana, S.; Baidya, M. Adv. Synth. Catal. 2018, 360, 1099.
doi: 10.1002/adsc.201701410 |
[66] |
Chen, Y.; Chen, Y. J.; Guan, Z.; He, Y. H. Tetrahedron 2019, 75, 130763.
doi: 10.1016/j.tet.2019.130763 |
[67] |
Liu, T.; Li, Y.; Jiang, L.; Wang, J.; Jin, K.; Zhang, R.; Duan, C. Org. Biomol. Chem. 2020, 18, 1933.
doi: 10.1039/D0OB00057D |
[68] |
Kalaitzakis, D.; Kouridaki, A.; Noutsias, D.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2015, 54, 6283.
doi: 10.1002/anie.201500744 pmid: 25865698 |
[69] |
Raghuvanshi, A.; Singh, A. K.; Mobin, S. M.; Mathur, P. ChemistrySelect 2017, 2, 9245.
doi: 10.1002/slct.201701625 |
[70] |
Großkopf, J.; Kratz, T.; Rigotti, T.; Bach, T. Chem. Rev. 2022, 122, 1626.
doi: 10.1021/acs.chemrev.1c00272 |
[71] |
Plaza, M.; Großkopf, J.; Breitenlechner, S.; Bannwarth, C.; Bach, T. J. Am. Chem. Soc. 2021, 143, 11209.
doi: 10.1021/jacs.1c05286 |
[72] |
Maestri, G.; Serafino, A.; Chiminelli, M.; Balestri, D.; Marchiò, L.; Bigi, F.; Maggi, R.; Malacria, M. Chem. Sci. 2022, 13, 2632.
doi: 10.1039/d1sc06719b pmid: 35340858 |
[73] |
Hua, J.; Fang, Z.; Bian, M.; Ma, T.; Yang, M.; Xu, J.; Liu, C. K.; He, W.; Zhu, N.; Yang, Z.; Guo, K. ChemSusChem 2020, 13, 2053.
doi: 10.1002/cssc.202000098 |
[74] |
Huang, L.; Lin, J. S.; Tan, B.; Liu, X. Y. ACS Catal. 2015, 5, 2826.
doi: 10.1021/acscatal.5b00311 |
[75] |
Guo, S.; Chen, B.; Zhao, D.; Chen, W.; Zhang, G. Adv. Synth. Catal. 2016, 358, 3010.
doi: 10.1002/adsc.201600423 |
[76] |
Wang, G.; Chen, R.; Wu, M.; Sun, S.; Luo, X.; Chen, Z.; Guo, H.; Chong, C.; Xing, Y. Tetrahedron Lett. 2017, 58, 847.
doi: 10.1016/j.tetlet.2017.01.048 |
[77] |
Lei, W. L.; Feng, K. W.; Wang, T.; Wu, L. Z.; Liu, Q. Org. Lett. 2018, 20, 7220.
doi: 10.1021/acs.orglett.8b03147 |
[78] |
Ba, D.; Chen, Y.; Lv, W.; Wen, S.; Cheng, G. Org. Lett. 2019, 21, 8603.
doi: 10.1021/acs.orglett.9b03189 |
[79] |
Miao, C. B.; Zheng, A. Q.; Zhou, L. J.; Lyu, X.; Yang, H. T. Org. Lett. 2020, 22, 3381.
doi: 10.1021/acs.orglett.0c00870 |
[80] |
Liu, J.; Shi, G.; Chen, Z. ChemistrySelect 2020, 5, 5615.
doi: 10.1002/slct.202000631 |
[81] |
Ding, R.; Liu, Y. L.; Hao, H.; Chen, C. Y.; Liu, L.; Chen, N. S.; Guo, Y.; Wang, P. L. Org. Chem. Front. 2021, 8, 3123.
doi: 10.1039/D1QO00460C |
[82] |
Koronatov, A. N.; Rostovskii, N. V.; Khlebnikov, A. F.; Novikov, M. S. J. Org. Chem. 2018, 83, 9210.
doi: 10.1021/acs.joc.8b01228 |
[83] |
Koronatov, A. N.; Rostovskii, N. V.; Khlebnikov, A. F.; Novikov, M. S. Org. Lett. 2020, 22, 7958.
doi: 10.1021/acs.orglett.0c02893 |
[84] |
Peng, H.; Zhang, Y.; Zhu, Y.; Deng, G. J. Org. Chem. 2020, 85, 13290.
doi: 10.1021/acs.joc.0c01711 |
[1] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[2] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[3] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[4] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[5] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[6] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[7] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[8] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[9] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[10] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[11] | 吴孔川, 卢铠洪, 林建斌, 张慧君. 莱啉酰亚胺类化合物的邻位C—H键功能化研究进展[J]. 有机化学, 2023, 43(3): 1000-1011. |
[12] | 贾海瑞, 邱早早. 过渡金属催化硼-氢键活化合成含硼-杂原子键邻碳硼烷衍生物的研究进展[J]. 有机化学, 2023, 43(3): 1045-1068. |
[13] | 孙婧, 张萌萌, 锅小龙, 王琪, 王陆瑶. 无过渡金属条件下二芳基硒化合物的合成[J]. 有机化学, 2023, 43(12): 4251-4260. |
[14] | 吴利城, 伍贤青, 曲景平, 陈宜峰. Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用[J]. 有机化学, 2023, 43(12): 4239-4250. |
[15] | 秦思凝. 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023, 43(11): 3761-3783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||