有机化学 ›› 2024, Vol. 44 ›› Issue (3): 1013-1020.DOI: 10.6023/cjoc202309022 上一篇 下一篇
研究论文
收稿日期:
2023-09-21
修回日期:
2023-11-13
发布日期:
2024-04-02
作者简介:
共同第一作者
基金资助:
Xue Sun, Tingtao Yan, Kelu Yan, Jianjing Yang(), Jiangwei Wen()
Received:
2023-09-21
Revised:
2023-11-13
Published:
2024-04-02
Contact:
*E-mail: wenjy@qfnu.edu.cn; jjyang@whu.edu.cn
About author:
The authors contributed equally to this work.
Supported by:
文章分享
亚膦酸腙是一种罕见的结构片段, 有望应用于医药、功能材料、配体和合成中间体. 报道了一种牺牲阳极镍电极形成Ni2+以促进α-重氮酯磷酸化构筑亚膦酸腙的电化学方法. 反应在恒电流下进行, 无需外加贵金属催化剂和化学氧化还原试剂, 具有良好的底物适用性. 机理研究证实了成对电解介导的催化机制占主导地位.
孙雪, 颜廷涛, 闫克鲁, 杨建静, 文江伟. 电化学促使α-重氮酯的磷酸化构筑亚膦酸腙[J]. 有机化学, 2024, 44(3): 1013-1020.
Xue Sun, Tingtao Yan, Kelu Yan, Jianjing Yang, Jiangwei Wen. Electrochemical Enabled Phosphorylation of α-Diazoester to Access Phosphinic Hydrazone[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 1013-1020.
Entry | Deviation from standard conditions | Yieldb/% |
---|---|---|
1 | None | 98 |
2 | Without current | n.d. |
3 | nBu4NClO4, nBu4NBr, nBu4NOAc, Et4NBr, Et4NTs instead of nBu4NBF4 | 45~82 |
4 | LiClO4 instead of nBu4NBF4 | n.d. |
5 | CH3CN as solvent | 53 |
6 | DCE as solvent | 82 |
7 | DMSO as solvent | 77 |
8 | Pt(+)|Ni(-) | n.d. |
9 | Pt(+), or C rods (+) instead of Ni(+) | n.d. |
10 | C rods(-), or Ni(-) instead of Pt(-) | 85, 90 |
11 | 3 mA, 5 h | 88 |
12 | 8 mA, 2 h | 85 |
Entry | Deviation from standard conditions | Yieldb/% |
---|---|---|
1 | None | 98 |
2 | Without current | n.d. |
3 | nBu4NClO4, nBu4NBr, nBu4NOAc, Et4NBr, Et4NTs instead of nBu4NBF4 | 45~82 |
4 | LiClO4 instead of nBu4NBF4 | n.d. |
5 | CH3CN as solvent | 53 |
6 | DCE as solvent | 82 |
7 | DMSO as solvent | 77 |
8 | Pt(+)|Ni(-) | n.d. |
9 | Pt(+), or C rods (+) instead of Ni(+) | n.d. |
10 | C rods(-), or Ni(-) instead of Pt(-) | 85, 90 |
11 | 3 mA, 5 h | 88 |
12 | 8 mA, 2 h | 85 |
[1] |
(a) Biçer E. Phosphorus, Sulfur Silicon Relat. Elem. 2021, 196, 791.
doi: 10.1080/10426507.2021.1945062 |
(b) Cai B.-G.; Xuan J.; Xiao W.-J. Sci. Bull. 2019, 64, 337.
doi: 10.1016/j.scib.2019.02.002 |
|
[2] |
(a) Audrieth L. F.; Gher R. J.; Smith W. C. J. Org. Chem. 1955, 20, 1288.
doi: 10.1021/jo01126a018 |
(b) Ephraim F.; Sackheim M. Ber. Dtsch. Chem. Ges. 1911, 44, 3416.
doi: 10.1002/cber.v44:3 |
|
(c) Tolkmith H.; Britton E. J. Org. Chem. 1959, 24, 705.
doi: 10.1021/jo01087a608 |
|
[3] |
(a) Boaz N. W.; Mackenzie E. B.; Debenham S. D.; Large S. E.; Ponasik J. A. J. Org. Chem. 2005, 70, 1872.
doi: 10.1021/jo048312y pmid: 33679278 |
(b) Wang D.-Y.; Huang J.-D.; Hu X.-P.; Deng J.; Yu S.-B.; Duan Z.-C.; Zheng Z. J. Org. Chem. 2008, 73, 2011.
doi: 10.1021/jo702488j pmid: 33679278 |
|
(c) Gross T.; Chou S.; Dyke A.; Dominguez B.; Groarke M.; Medlock J.; Ouellette M.; Reddy J. P.; Seger A.; Zook S.; Zanotti-Gerosa A. Tetrahedron Lett. 2012, 53, 1025.
pmid: 33679278 |
|
(d) You C.; Li S.; Li X.; Lv H.; Zhang X. ACS Catal. 2019, 9, 8529.
doi: 10.1021/acscatal.9b02667 pmid: 33679278 |
|
(e) Schlatzer T.; Breinbauer R. Adv. Synth. Catal. 2021, 363, 668.
doi: 10.1002/adsc.202001278 pmid: 33679278 |
|
[4] |
Select recent representative examples: a Wang, L.; Wu, Y.; Liu, Y.; Yang, H.; Liu, X.; Wang, J.; Li, X.; Jiang, J. Org. Lett. 2017, 19, 782.
doi: 10.1021/acs.orglett.6b03752 pmid: 34766748 |
(b) Ciszewski Ł. W.; Durka J.; Gryko D. Org. Lett. 2019, 21, 7028.
doi: 10.1021/acs.orglett.9b02612 pmid: 34766748 |
|
(c) Su Y.-L.; Liu G.-X.; Liu J.-W.; Tram L.; Qiu H.; Doyle M. P. J. Am. Chem. Soc. 2020, 142, 13846.
doi: 10.1021/jacs.0c05183 pmid: 34766748 |
|
(d) He F.; Koenigs R. M. Org. Lett. 2021, 23, 5831.
doi: 10.1021/acs.orglett.1c01982 pmid: 34766748 |
|
(e) Shou J.-Y.; Xu X.-H.; Qing F.-L. Angew. Chem., Int. Ed. 2021, 60, 15271.
pmid: 34766748 |
|
(f) Stivanin M. L.; Duarte M.; Leão L. P. M. O.; Saito F. A.; Jurberg I. D. J. Org. Chem. 2021, 86, 17528.
doi: 10.1021/acs.joc.1c02411 pmid: 34766748 |
|
(g) Wang F.; Nishimoto Y.; Yasuda M. J. Am. Chem. Soc. 2021, 143, 20616.
doi: 10.1021/jacs.1c10517 pmid: 34766748 |
|
(h) Chen R.; Ma G.; Li Y.; Zhang J.; Xia R.; Wang K.-K.; Liu L. J. Org. Chem. 2022, 87, 10990.
doi: 10.1021/acs.joc.2c01262 pmid: 34766748 |
|
(i) Lv Y.; Liu R.; Ding H.; Wei W.; Zhao X.; He L. Org. Chem. Front. 2022, 9, 3486.
doi: 10.1039/D2QO00311B pmid: 34766748 |
|
(j) Shou J.-Y.; Qing F.-L. Angew. Chem., Int. Ed. 2022, 61, e202208860.
doi: 10.1002/anie.v61.39 pmid: 34766748 |
|
(k) Sun Y.-T.; Rao X.; Xu W.; Xu M.-H. Org. Chem. Front. 2022, 9, 3467.
doi: 10.1039/D2QO00164K pmid: 34766748 |
|
[5] |
(a) Tolkmith H. J. Am. Chem. Soc. 1962, 84, 2097.
doi: 10.1021/ja00870a020 pmid: 789882 |
(b) Cates L. A.; Cho Y. M.; Smith L. K.; Williams L.; Lemke T. L. J. Med. Chem. 1976, 19, 1133.
pmid: 789882 |
|
(c) Bagrov F.; Matveeva T.; Petrukhin V. Chem. Technol. Fuels Oils 1997, 33, 41.
doi: 10.1007/BF02768139 pmid: 789882 |
|
[6] |
Audrieth L.; Gher JR R.; Smith W. C. J. Org. Chem. 1955, 20, 1288.
doi: 10.1021/jo01126a018 |
[7] |
(a) Jiang H.; Jin H.; Abdukader A.; Lin A.; Cheng Y.; Zhu C. Org. Biomol. Chem. 2013, 11, 3612.
doi: 10.1039/c3ob40429c |
(b) Gu X.; Xie P.; Jiang J.; Wu Y.; Wang L. J. Chem. Res. 2018, 42, 63.
doi: 10.3184/174751918X15177590137425 |
|
[8] |
Balázs L. B.; Huang Y.; Khalikuzzaman J. B.; Li Y.; Pullarkat S. A.; Leung P.-H. J. Org. Chem. 2020, 85, 14763.
doi: 10.1021/acs.joc.0c00181 |
[9] |
Recent representative reviews: (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 pmid: 34060564 |
(b) Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 pmid: 34060564 |
|
(c) Liu Y.; Yi H.; Lei A. Chin. J. Chem. 2018, 36, 692.
doi: 10.1002/cjoc.v36.8 pmid: 34060564 |
|
(d) Wang H.; Gao X.; Lv Z.; Abdelilah T.; Lei A. Chem. Rev. 2019, 119, 6769.
doi: 10.1021/acs.chemrev.9b00045 pmid: 34060564 |
|
(e) Xiong P.; Xu H. C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 pmid: 34060564 |
|
(f) Jiao K. J.; Xing Y. K.; Yang Q. L.; Qiu H.; Mei T. S. Acc. Chem. Res. 2020, 53, 300.
doi: 10.1021/acs.accounts.9b00603 pmid: 34060564 |
|
(g) Yamamoto K.; Kuriyama M.; Onomura O. Acc. Chem. Res. 2020, 53, 105.
doi: 10.1021/acs.accounts.9b00513 pmid: 34060564 |
|
(h) Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941.
doi: 10.1039/d1cs00223f pmid: 34060564 |
|
(i) Yang J.; Qin H.; Yan K.; Cheng X.; Wen J. Adv. Synth. Catal. 2021, 363, 5407.
doi: 10.1002/adsc.v363.24 pmid: 34060564 |
|
(j) Yang J.; Ma J.; Yan K.; Tian L.; Li B.; Wen J. Adv. Synth. Catal. 2022, 364, 845.
doi: 10.1002/adsc.v364.4 pmid: 34060564 |
|
(k) Zhou H.-Y.; Tang H.-T.; He W.-M. Chin. J. Catal. 2023, 46, 4.
doi: 10.1016/S1872-2067(22)64197-4 pmid: 34060564 |
|
(l) Li Q.-Y.; Swaroop T. R.; Hou C.; Wang Z.-Q.; Pan Y. M.; Tang H.-T. Adv. Synth. Catal. 2019, 361, 1761.
doi: 10.1002/adsc.v361.8 pmid: 34060564 |
|
(m) He M.; Cheng S.; Pan Y.; Tang H. T.; Pan Y. M. Chin. J. Org. Chem. 2021, 41, 2354. (in Chinese)
pmid: 34060564 |
|
( 何慕雪, 程诗砚, 潘永周, 唐海涛, 潘英明, 有机化学, 2021, 41, 2354.)
pmid: 34060564 |
|
(n) Zheng Y.; Qian S.; Xu P.; Zheng B.; Huang S. L. Chin. J.Org. Chem. 2022, 42, 4275. (in Chinese)
pmid: 34060564 |
|
( 郑煜, 钱沈城, 徐鹏程, 郑斌南, 黄申林, 有机化学, 2022, 42, 4275.)
pmid: 34060564 |
|
(o) Xu H.; Meng X.; Zheng Y.; Luo J.; Huang S. L. Chin. J. Org. Chem. 2021, 41, 4696. (in Chinese)
doi: 10.6023/cjoc202112016 pmid: 34060564 |
|
( 徐鹤华, 孟祥太, 郑煜, 罗金岳, 黄申林, 有机化学, 2021, 41, 4696.)
pmid: 34060564 |
|
[10] |
Yuan Y.; Liu X.; Hu J.; Wang P.; Wang S.; Alhumade H.; Lei A. Chem. Sci. 2022, 13, 3002.
doi: 10.1039/D1SC07248J |
[11] |
(a) Sun X.; Yang J.; Yan K.; Zhuang X.; Yu J.; Song X.; Zhang F.; Li B.; Wen J. Chem. Commun. 2022, 58, 8238.
doi: 10.1039/D2CC02745C |
(b) Yang J.; Sun X.; Yan K.; Sun H.; Sun S.; Jia X.; Zhang F.; Wen J. Adv. Synth. Catal. 2022, 364, 2735.
doi: 10.1002/adsc.v364.16 |
[1] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[2] | 周兰, 何红, 杨德巧, 侯中伟, 王磊. N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024, 44(3): 981-988. |
[3] | 吴际伟, 何俊, 王晶晶, 李丽霞, 徐采玉, 周洁, 李子荣, 许华建. 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024, 44(3): 972-980. |
[4] | 朱子乐, 李鹏飞, 仇友爱. 电化学芳烃C(sp2)—H胺化反应的研究进展[J]. 有机化学, 2024, 44(3): 871-891. |
[5] | 陈红斌, 杨思佳, 叶智鹏, 陈凯, 向皞月, 阳华. 以路易斯碱硼烷为氢供体电催化还原喹啉及酮[J]. 有机化学, 2024, 44(3): 966-971. |
[6] | 叶增辉, 刘华清, 张逢质. 有机光电催化合成研究进展[J]. 有机化学, 2024, 44(3): 840-870. |
[7] | 黄健, 张文珍. 碳氮键参与的电化学阴极还原反应研究进展[J]. 有机化学, 2024, 44(3): 825-839. |
[8] | 陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊, 徐浩. 不对称电化学有机合成[J]. 有机化学, 2024, 44(3): 748-779. |
[9] | 李章健, 王振华, 郭剑峰, 方萍, 马聪, 刘润华, 梅天胜. 电化学促进2,2,6,6-四甲基哌啶氧化物(TEMPO)介导的甘氨酸衍生物氧化脱氢Povarov/串联反应[J]. 有机化学, 2024, 44(3): 940-950. |
[10] | 方新月, 黄雅雯, 胡新伟, 阮志雄. 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024, 44(3): 903-926. |
[11] | 李梦帆, 程旭. 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024, 44(3): 1005-1012. |
[12] | Hasil Aman, 常瑞, 叶俊涛. 氧化型光电催化促进的C—H键官能团化反应研究进展[J]. 有机化学, 2024, 44(3): 728-747. |
[13] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[14] | 王竣永, 李娜, 柯杰, 何川. 电化学硅基化反应的研究进展[J]. 有机化学, 2024, 44(3): 927-939. |
[15] | 杨帆, 方婷, 杨桂春, 高梦. 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024, 44(3): 1021-1030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||