有机化学 ›› 2014, Vol. 34 ›› Issue (8): 1523-1541.DOI: 10.6023/cjoc201403003 上一篇 下一篇
综述与进展
刘雨燕a, 方烨汶a, 张莉a,b, 金小平c, 李瑞丰b, 朱帅汝a, 高浩其a, 房江华a, 夏勤波a
收稿日期:
2014-03-03
修回日期:
2014-04-02
发布日期:
2014-04-18
通讯作者:
方烨汶,金小平,李瑞丰
E-mail:nbut.fang@gmail.com
基金资助:
Liu Yuyana, Fang Yewena, Zhang Lia,b, Jin Xiaopingc, Li Ruifengb, Zhu Shuairua, Gao Haoqia, Fang Jianghuaa, Xia Qinboa
Received:
2014-03-03
Revised:
2014-04-02
Published:
2014-04-18
Supported by:
文章分享
自格氏试剂发现以来,含多官能团的格氏试剂合成一直是有机镁合成化学研究的热点和难点. 重点综述了Knochel小组以氯化锂为添加剂,成功地通过三类常用的格氏试剂制备方法(金属镁和有机卤化物的直接氧化加成、卤素-镁交换、C—H键的镁化)合成了一系列含多官能团的格氏试剂. 氯化锂的引入不但解决了官能团的兼容性问题,还提高了格氏试剂的反应活性,从而极大拓展了格氏试剂在合成化学中的应用. 对氯化锂促进型格氏试剂合成的局限和研究前景也进行了探讨和展望.
刘雨燕, 方烨汶, 张莉, 金小平, 李瑞丰, 朱帅汝, 高浩其, 房江华, 夏勤波. LiCl促进的多官能团格氏试剂的制备及应用研究进展[J]. 有机化学, 2014, 34(8): 1523-1541.
Liu Yuyan, Fang Yewen, Zhang Li, Jin Xiaoping, Li Ruifeng, Zhu Shuairu, Gao Haoqi, Fang Jianghua, Xia Qinbo. Advances in LiCl-Promoted Preparation of Polyfunctional Grignard Reagents and the Applications[J]. Chin. J. Org. Chem., 2014, 34(8): 1523-1541.
[1] (a) Grignard, V. C. R. Hebd. Séances Acad. Sci. 1900, 130, 1322.(b) Grignard, V. Ph.D. Dissertation, University of Lyon, Lyon, France, 1901.[2] Knochel, P.; Krasovskiy, A.; Sapountzis, I. In Handbook of Functionalized Organometallics, Vol. 1, Ed.: Knochel, P., Wiley-VCH, Weinheim, 2005, 109.(b) Mulvey, R. E. Organometallics 2006, 25, 1060.[3] (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374.(b) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144.(c) Seyferth, D. Organometallics 2009, 28, 1598.[4] Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4415.[5] (a) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.(b) Ila, H.; Baron, O.; Wagner, A. J.; Knochel, P. Chem. Commun. 2006, 583.(c) Ila, H.; Baron, O.; Wagner, A. J.; Knochel, P. Chem. Lett. 2006, 35, 2.(d) Fang, H.; Xi, Z. Chemsitry 2005, 68, 8 (in Chinese).(方红云, 席振峰, 化学通报, 2005, 68, 8.)(e) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66, 4333.(f) Bayh, O.; Awad, H.; Mongin, F.; Hoarau, C.; Trécourt, F.; Quéguiner, G.; Marsais, F.; Blanco, F.; Abarca, B.; Ballesteros, R. Tetrahedron 2005, 61, 4779.(g) Reichle, M. A.; Breit, B. Angew. Chem., Int. Ed. 2012, 51, 5730.[6] (a) Knochel, P.; Schade M. A.; Bernhardt, S.; Manolikakes, G.; Metzger, A.; Piller, F. M.; Rohbogner, C. J.; Mosrin, M. Beilstein J. Org. Chem. 2011, 7, 1261.(b) Haag, B. A.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 9794.(c) Zhao, J.; Wan, H.; Gu, Y.; Du, Y.; Lv, J. Chem. Reag. 2013, 35, 27 (in Chinese).(赵娟, 万洪, 谷玉杰, 杜咏梅, 吕剑, 化学试剂, 2013, 35, 27.)(d) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040.(e) Blümke, T.; Chen, Y.-H.; Peng, Z.; Knochel, P. Nat. Chem. 2010, 2, 313.(f) Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107.(g) Peng, Z.; Konchel, P. Org. Lett. 2011, 13, 3198.[7] Prévost, C. Bull. Soc. Chim. Fr. 1931, 49, 1372.[8] Tamborski, C.; Moore, G. J. J. Organomet. Chem. 1971, 26, 153.[9] Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem., Int. Ed. 1998, 37, 1701.[10] Kneisel, F. F.; Dochnahl, M.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 1017.[11] Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333.[12] Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 159.[13] Ren, H.; Krasovskiy, A.; Knochel, P. Org. Lett. 2004, 6, 4215.[14] (a) Rauhut, C. B.; Vu, V. A.; Fleming, F. F.; Knochel, P. Org. Lett. 2008, 10, 1187.(b) Nishimura, R. H. V.; Toledo, F. T.; Lopes, J. L. C.; Clososki, G. C. Tetrahedron Lett. 2013, 54, 287.[15] (a) Ogawa, S.; Furukawa, N. J. Org. Chem. 1991, 56, 5723.(b) Capozzi, M. A. M.; Cardellicchio, C.; Naso, F.; Spina, G.; Tortorella, P. J. Org. Chem. 2001, 66, 5933.(c) Yamamoto, T.; Ogawa, S.; Sugawara, M.; Kawai, Y.; Sato, R. Bull. Chem. Soc. Jpn. 2006, 79, 460.[16] (a) Rauhut, C. B.; Melzig, L.; Knochel, P. Org. Lett. 2008, 10, 3891.(b) Melzig, L.; Rauhut, C. B.; Knochel, P. Chem. Commun. 2009, 3536.[17] (a) Boudet, N.; Knochel, P. Org. Lett. 2006, 8, 3737.(b) Boudet, N.; Lachs, J. R.; Knochel, P. Org. Lett. 2007, 9, 5525.(c) Dubbaka, S. R.; Kienle, M.; Mayr, H.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 9093.(d) Duan, X.-F.; Ma, Z.-Q.; Zhang, F.; Zhang, Z.-B. J. Org. Chem. 2009, 74, 939.[18] Unsinn, A.; Dunst, C.; Knochel, P. Beilstein J. Org. Chem. 2012, 8, 2202.[19] Hauser, C. R.; Walker, H. G. J. Am. Chem. Soc. 1947, 69, 295.[20] Eaton, P. E.; Lee, C.-H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016.[21] (a) Eaton, P. E.; Lukin, K. A. J. Am. Chem. Soc. 1993, 115, 11370.(b) Zhang, M.-X.; Eaton, P. E. Angew. Chem., Int. Ed. 2002, 41, 2169.[22] Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 2958.[23] Gu, Y. G.; Bayburt, E. K. Tetrahedron Lett. 1996, 37, 2565.[24] Clososki, G. C.; Rohbogner, C. J.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 7681.[25] Unsinn, A.; Rohbogner C. J.; Knochel, P. Adv. Synth. Catal. 2013, 355, 1553.[26] (a) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.(b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.(c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.[27] (a) Snieckus, V. Chem. Rev. 1990, 90, 879.(b) Boudet, N.; Sase, S.; Sinha, P.; Liu, C.-Y.; Krasovskiy, A.; Knochel, P. J. Am. Chem. Soc. 2007, 129, 12358.[28] (a) Rohbogner, C. J.; Clososki, G. C.; Knochel, P. Angew. Chem., Int. Ed. 2008, 47, 1503.(b) Bellamy, E.; Bayh, O.; Hoarau, C.; Trécourt, F.; Quéguiner, G.; Marsais, F. Chem. Commun. 2010, 46, 7043.(c) Rohbogner, C. J.; Wirth, S.; Knochel, P. Org. Lett. 2010, 12, 1984.[29] (a) Barl, N. M.; Sansiaume-Dagousset, E.; Karaghiosoff, K.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 10093.(b) Sämann, C.; Coya, E.; Knochel, P. Angew. Chem., Int. Ed. 2014, 53, 1430.[30] Jaric, M.; Haag, B. A.; Unsinn, A.; Karaghiosoff, K.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 5451.[31] (a) Mosrin, M.; Knochel, P. Chem. Eur. J. 2009, 15, 1468.(b) Jaric, M.; Haag, B. A.; Manolikakes, S. M.; Knochel, P. Org. Lett. 2011, 13, 2306.(c) Groll, K.; Manolikakes, S. M.; du Jourdin, X. M.; Jaric, M.; Bredihhin, A.; Karaghiosoff, K.; Carell, T.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 6776.(d) Klatt, T.; Roman, D. S.; León, T.; Knochel, P. Org. Lett. 2014, 15, 1232.[32] (a) Piller, F. M.; Bresser, T.; Fischer, M. K.; Knochel, P. J. Org. Chem. 2010, 75, 4365.(b) Bresser, T.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 1914.[33] Duez, S.; Steib, A. K.; Knochel, P. Org. Lett. 2012, 14, 1951.[34] Piller, F. M.; Appukkuttan, P.; Gavryushin, A.; Helm, M.; Knochel, P. Angew. Chem., Int. Ed. 2008, 47, 6802.[35] Blümke, T. D.; Piller, F. M.; Knochel, P. Chem. Commun. 2010, 46, 4082.[36] (a) Kopp, F.; Knochel, P. Org. Lett. 2007, 9, 1639.(b) Piller, F. M.; Knochel, P. Org. Lett. 2009, 11, 445.(c) Despotopoulou, C.; Klier, L.; Knochel, P. Org. Lett. 2009, 11, 3326.(d) Mosrin, M.; Bresser, T.; Knochel, P. Org. Lett. 2009, 11, 3406.(e) Hass, D.; Mosrin, M.; Knochel, P. Org. Lett. 2013, 15, 6162.[37] (a) Mosrin, M.; Knochel, P. Org. Lett. 2008, 10, 2497.(b) Hawkins, V. F.; Wilkinson, M. C.; Whiting, M. Org. Process Res. Dev. 2008, 12, 1265.(c) Tang, W.; Sarvestani, M.; Wei, X.; Nummy, L. J.; Patel, N.; Narayanan, B.; Byrne, D.; Lee, H.; Yee, N. K.; Senanayake, C. H. Org. Process Res. Dev. 2009, 13, 1426.(d) Leermann, T.; Leroux, F. R.; Colobert, F. Org. Lett. 2011, 13, 4479.(e) Demory, E.; Blandin, V.; Einhorn, J.; Chavant, P. Y. Org. Process Res. Dev. 2011, 15, 710.(f) Anbarasan, P.; Neumann, H.; Beller, M. Chem. Eur. J. 2011, 17, 4217.(g) Dunst, C.; Knochel, P. J. Org. Chem. 2011, 76, 6972.[38] (a) Yamada, S.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 2215.(b) Yamada, S.; Knochel, P. Synthesis 2010, 2490.[39] Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 2219.[40] (a) Wong, K.-T.; Chien, Y.-Y.; Liao, Y.-L.; Lin, C.-C.; Chou, M.-Y.; Leung, M. J. Org. Chem. 2002, 67, 1041.(b) Pintaric, C.; Olivero, S.; Gimbert, Y.; Chavant, P. Y.; Duñach, E. J. Am. Chem. Soc. 2010, 132, 11825.[41] Haag, B. A.; Sämann, C.; Jana, A.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 7290.[42] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.(b) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419.(c) Martin R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.[43] Heravi, M. M.; Hashemi, E.; Azimian, F. Tetrahedron 2014, 70, 7.[44] Negishi, E. Angew. Chem., Int. Ed. 2011, 50, 6738.[45] (a) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.(b) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Org. Process Res. Dev. 2010, 14, 30.(c) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Sineckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.[46] Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844.[47] (a) Bolm, C.; Legros, J.; Le Piah, J.; Zani, L. Chem. Rev. 2004, 104, 217.(b) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500.(c) Cahiez, A.; Moyeux, A. Chem. Rev. 2010, 110, 1435.(d) Kuzmina, O. M.; Steib, A. K.; Flubacher, D.; Knochel, P. Org. Lett. 2012, 14, 4818.(e) Steib, A. K.; Kuzmina, O. M.; Fernandez, S.; Flubacher, D.; Knochel, P. J. Am. Chem. Soc. 2013, 135, 15346.[48] Kuzmina, O. M.; Steib, A. K.; Markiewicz, J. T.; Flubacher, D.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 4945.[49] (a) Hegedus, L. S.; Thompson, H. P. J. Am. Chem. Soc. 1985, 107, 5663.(b) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222.[50] Manolikakes G.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 205.[51] Kienle, M.; Knochel, P. Org. Lett. 2010, 12, 2702.[52] Kofink, C. C.; Knochel, P. Org. Lett. 2006, 8, 4121.[53] (a) Maji, M. S.; Pfeifer, T.; Studer, A. Angew. Chem., Int. Ed. 2008, 47, 9547.(b) Kiefer, G.; Jeanbourquin, L.; Severin, K. Angew. Chem., Int. Ed. 2013, 52, 6302.[54] Krasovskiy, A.; Tishkov, A.; del Amo, V.; Mayr, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 5010.[55] (a) Schade, M. A.; Manolikakes, G.; Knochel, P. Org. Lett. 2010, 12, 3648.(b) Kienle, M.; Knochel, P. Org. Lett. 2010, 12, 2702.(c) Sämann, C.; Schade, M. A.; Yamada, S.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 9495.[56] (a) Boudet, N.; Dubbaka, S. R.; Knochel, P. Org. Lett. 2008, 10, 1715.(b) Frischmuth, A.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 10084.[57] Bernhardt, S.; Shen, Z.-L.; Knochel, P. Chem. Eur. J. 2013, 19, 828.[58] Dong, Z.; Clososki, G. C.; Wunderlich, S. H.; Unsinn, A.; Li, J.; Knochel, P. Chem. Eur. J. 2009, 15, 457.[59] a) Wunderlich, S. H.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 7685.(b) Wunderlich, S. H.; Knochel, P. Chem. Commun. 2008, 47, 6387.(c) Wunderlich, S. H.; Knochel, P. Org. Lett. 2008, 10, 4705.(d) Mosrin, P.; Knochel, P. Org. Lett. 2009, 11, 1837.(e) Wunderlich, S. H.; Rohbogner, C. J.; Unsinn, A.; Knochel, P. Org. Process Res. Dev. 2010, 14, 339.[60] Wunderlich, S. H.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 9717.[61] Wunderlich, S. H.; Kienle, M.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 7256.[62] Jeganmohan, M.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 8520.[63] Wunderlich, S. H.; Knochel, P. Chem. Eur. J. 2010, 16, 3304.[64] Ortiz, R. P.; Facchetti, A.; Marks, T. J. Chem. Rev. 2010, 110, 205.[65] Yazaki, S.; Funahashi, M.; Kagimoto, J.; Ohno, H.; Kato, T. J. Am. Chem. Soc. 2010, 132, 7702.[66] Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141.[67] (a) Osaka, I.; McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202.(b) Yokozawa, T.; Yokoyama, A. Chem. Rev. 2009, 109, 5595.[68] (a) Tanaka, S.; Tamba, S.; Tanaka, D.; Sugie, A.; Mori, A. J. Am. Chem. Soc. 2011, 133, 16734.(b) Tamba, S.; Mitsuda, S.; Tanaka, F.; Sugie, A.; Mori, A. Organometallics 2012, 31, 2263.[69] (a) McCullough, R. D. Adv. Mater. 1998, 10, 93.(b) Huang, L.; Wu, S.; Qu, Y.; Geng, Y.; Wang, F. Macromolecules 2008, 41, 8944.[70] Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater. 1999, 11, 250.[71] Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2006, 128, 16012.[72] Stefan, M. C.; Javier, A. E.; Osaka, I.; McCullough, R. D. Macromolecules 2009, 42, 30.[73] Maji, M. S.; Pfeifer, T.; Studer, A. Chem. Eur. J. 2010, 16, 5872.[74] Chen, Q.; du Jourdin, X. M.; Knochel, P. J. Am. Chem. Soc. 2013, 135, 4958.[75] (a) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666.(b) Wasa, M.; Worrell, B. T.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 1275.(c) Goriya, Y.; Ramana, C. V. Chem. Eur. J. 2012, 18, 13288.[76] Haag, B. A.; Zhang, Z.-G.; Li, J.-S.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 9513.[77] Frischmuth, A.; Unsinn, A.; Groll, K.; Stadtmüller, H.; Knochel, P. Chem. Eur. J. 2012, 18, 10234.[78] (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2047.(b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.(c) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.(d) Sadig, J. E. R.; Willis, M. C. Synthesis 2011, 1.[79] (a) Li, F.; Castle, S. L. Org. Lett. 2007, 9, 4033.(b) Li, F.; Tartakoff, S. S.; Castle, S. L. J. Am. Chem. Soc. 2009, 131, 6674.[80] Wu, Y.-C.; Zhu, J. Org. Lett. 2009, 11, 5558.[81] Kitahara, K.; Shimokawa, J.; Fukuyama, T. Chem. Sci. 2013, 5, 904.[82] Krasovskiy, A.; Knochel, P. Synthesis 2006, 890.[83] Unsinn, A.; Ford, M. J.; Knochel, P. Org. Lett. 2013, 15, 1128.[84] (a) Bernhardt, S.; Manolikakes, G.; Kunz, T.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 9205.(b) Stathakis, C. I.; Bernhardt, S.; Quint, V.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 9428.(c) Stathakis, C. I.; Manolikakes, S. M.; Knochel, P. Org. Lett. 2013, 15, 1302.(d) Colombe, J. R.; Bernhardt, S.; Stathakis, C.; Buchwald, S. L.; Knochel, P. Org. Lett. 2013, 15, 5754.[85] (a) Kaino, M.; Ishihara, K.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1989, 62, 3736.(b) Hoffmann, R. W.; Hölzer, B.; Knopff, O.; Harms, K. Angew. Chem., Int. Ed. 2000, 39, 3072.(c) Chen, Z.-N.; Fu, G.; Xu, X. Org. Lett. 2011, 13, 2046.(d) Rayner, P. J.; O'Brien, P.; Horan, R. A. J. Am. Chem. Soc. 2013, 135, 8071.(e) Barker, G.; Alshawish, M. R.; Skilbeck, M. C.; Coldham, I. Angew. Chem., Int. Ed. 2013, 52, 7700.[86] (a) Basu, A.; Thayumanavan, S. Angew. Chem., Int. Ed. 2002, 41, 716.(b) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.(c) Lee, W. K.; Park, Y. S.; Beak, P. Acc. Chem. Res. 2009, 42, 224.(d) Scott, H. K.; Aggarwal, V. K. Chem. Eur. J. 2011, 17, 13124.(e) Dagousset, G.; Moriya, K.; Mose, R.; Berionni, G.; Karaghiosoff, K.; Knochel, P. Angew. Chem., Int. Ed. 2014, 53, 1425.[87] (a) Hauk, D.; Lang, S.; Murso, A. Org. Process Res. Dev. 2006, 10, 733.(b) Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. J. Org. Chem. 2009, 74, 2760.(c) Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Org. Lett. 2012, 14, 2602.(d) Garcίa-Álvarez, P.; Graham, D. V.; Hevia, E.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; ÓHara, C. T.; Weatherstone, S. Angew. Chem., Int. Ed. 2008, 47, 8079.[88] Kim, W.-J.; Ko, K.-Y.; Paik, S.-U.; Kim, H. Bull. Korean Chem. Soc. 1998, 9, 111.[89] Noji, T.; Fujiwara, H.; Okano, K.; Tokuyama, H. Org. Lett. 2013, 15, 1946.[90] (a) Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 5704.(b) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675.(c) Wiles, C.; Watts, P. Green Chem. 2014, 16, 55.[91] (a) Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. Chem. Commun. 2006, 2566.(b) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. Synlett 2006, 427.[92] Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. Chem. Commun. 2010, 46, 2450.[93] (a) Wakami, H.; Yoshida, J. Org. Process Res. Dev. 2005, 9, 787.(b) Nagaki, A.; Yamada, S.; Doi, M.; Tomida, Y.; Takabayashi, N.; Yoshida, J. Green Chem. 2011, 13, 1110.(c) Brodmann, T.; Koos, P.; Metzger, A.; Knochel, P.; Ley, S. V. Green Chem. 2012, 14, 1335.(d) Muñoz, J. M.; Alcázar, J.; de la Hoz, A.; Díaz-Ortiz, Á.; Alonso de Diegoa, S.-A. Green Chem. 2012, 14, 1335. |
[1] | 韩吉来, 唐美麟, 孙逊. 白藜芦醇二聚体Quadrangularin A和Pallidol合成方法学研究[J]. 有机化学, 2020, 40(6): 1571-1577. |
[2] | 姜铨, 何玲, 李卫东. 多取代烯丙基硅化合物的立体选择性合成研究[J]. 有机化学, 2019, 39(12): 3454-3459. |
[3] | 吴燕, 罗凡, 潘世敏, 李玉涵, 何树华. 镍催化(Z)-1,2-二芳硫基-1,2-二芳基烯烃与格氏试剂偶联反应制备多取代烯烃[J]. 有机化学, 2019, 39(10): 2946-2951. |
[4] | 陈锦杨, 吴小波, 易荣楠, 许新华. 镍催化格氏试剂与二芳基乙炔偶联反应制备四取代萘[J]. 有机化学, 2017, 37(7): 1850-1854. |
[5] | 陈程, 徐蒙蒙, 赵青, 刘承秀, 杨鸿均, 冯豫川. 盐酸黄连素的汇聚式合成研究[J]. 有机化学, 2017, 37(2): 503-507. |
[6] | 李灵杰, 张敬, 唐渝, 许开天, 张渊明. 无催化剂一锅法合成4-取代喹唑啉[J]. 有机化学, 2017, 37(10): 2711-2716. |
[7] | 康娟, 黄丹凤, 王克虎, 苏瀛鹏, 胡雨来, 常青. α-三氟甲基-α-羟基Weinreb酰胺的合成研究[J]. 有机化学, 2017, 37(1): 103-109. |
[8] | 贾婉, 赵立志, 魏恒旭, 朱林东, 傅磊, 陈蔚春. 铁催化二级氯代烷烃与炔基格氏试剂的交叉偶联反应[J]. 有机化学, 2016, 36(5): 1060-1064. |
[9] | 唐凤翔, 叶久勇. 铜催化格氏试剂不对称共轭加成研究进展[J]. 有机化学, 2015, 35(7): 1414-1427. |
[10] | 赵蔚, 刘伟. Weinreb酰胺在有机合成中的应用进展[J]. 有机化学, 2015, 35(1): 55-69. |
[11] | 马丽芳, 吕文贤, 黄丹凤, 牛腾, 苏瀛鹏, 王克虎, 胡雨来. 菲啶类化合物的合成新方法[J]. 有机化学, 2014, 34(5): 962-967. |
[12] | 唐金鹏, 唐渝, 杨骏, 张渊明. 单质硒促进的格氏试剂自偶联反应[J]. 有机化学, 2013, 33(05): 1010-1014. |
[13] | 姚贵阳, 韦京辰, 戴伟龙, 杨达, 潘英明, 王恒山. 马来海松酸三甲酯区域选择性格氏加成反应研究[J]. 有机化学, 2013, 33(01): 138-142. |
[14] | 马欣, 李万方, 范为正, 陶晓明, 李晓明, 姚莹, 诸吕锋, 陈厚和, 谢小敏, 张兆国. 多官能团羰基化合物的高选择性不对称氢化[J]. 有机化学, 2012, 32(08): 1353-1358. |
[15] | 朱新强, 阳年发, 任芳. 薄荷基氯格氏试剂与卤代烃的立体选择性反应研究[J]. 有机化学, 2010, 30(11): 1759-1763. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||