[1] (a) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171. (b) Li, C.; Zhu, C. Acta Chim. Sinica 2019, 77, 771(in Chinese). (李超忠, 朱晨, 化学学报, 2019, 77, 771.) (c) Smith, J. M.; Harwood, S. J.; Baran, P. S. Acc. Chem. Res. 2018, 51, 1807. (d) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692. (e) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58. [2] For selected reviews on merger of transition metal catalysis with alkyl radical, see: (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264. (b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036. (c) Green, S. A.; Crossley, S. W. M.; Matos, J. L. M.; Shevick, S. L.; Shenvi, R. A. Acc. Chem. Res. 2018, 51, 2628. (d) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Chem. Rev. 2016, 116, 8912. (e) Liang, K.; Xia, C. Chin. J. Chem. 2017, 35, 255. (f) Jahn, U. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay Anyway. In Radicals in Synthesis III, Eds.: Heinrich, M.; Gansäuer, A., Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, p. 323. (g) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. (h) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351. (i) Zhao, J.; Duan, X.; Guo, L.-N. Chin. J. Org. Chem. 2017, 37, 2498(in Chinese). (赵景峰, 段新华, 郭丽娜, 有机化学, 2017, 37, 2498.) (j) Chen, D.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2571(in Chinese). (陈董涵, 杨文, 姚永祺, 杨新, 邓颖颖, 杨定乔, 有机化学, 2018, 38, 2571.) [3] (a) Bour, J. R.; Ferguson, D. M.; McClain, E. J.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 8914. (b) Camasso, N. M.; Sanford, M. S. Science 2015, 347, 1218. (c) Tasker, S. Z.; Stanley, E. A.; Jamison, T. F. Nature 2014, 509, 299. (d) Takahashi, T.; Kanna, K. Modern Organonickel Chemistry, Wiley-VCH, Weinheim, Germany, 2005, pp. 41. [4] (a) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247. (b) Fu, G. C. ACS Cent. Sci. 2017, 3, 692. (c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587. (d) Hu, X. Chem. Sci. 2011, 2, 1867. (e) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525. [5] For selected recent examples on Ni-catalyzed cross-coupling with alkyl halides, see: (a) Wang, X.; Ma, G.; Peng, Y.; Gong, H. J. Am. Chem. Soc. 2018, 140, 14490. (b) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192. (c) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624. (d) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694. (e) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594. (f) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726. (g) Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. 1995, 34, 2723. [6] For selected recent examples on Ni-catalyzed cross-coupling with sulfones, see: (a) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G.; Bao D-H.; Qiao, W.; Sun, L.; Collins, M. R.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Science 2018, 360, 75. (b) Ariki, Z. T.; Maekawa, Y.; Zambo, M.; Crudden, C. M. J. Am. Chem. Soc. 2018, 140, 78. (c) Liu, M.; Zheng, Y.; Qiu, G.; Wu, J. Org. Chem. Front. 2018, 5, 2615. (d) Wu, J.-C.; Gong, L.-B.; Xia, Y.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 9909. [7] For selected recent examples on Ni-catalyzed cross-coupling with redox active esters, see: (a) Ni, S.; Padial, N. M.; Kingston, C.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 6726. (b) Chen, T.; Zhang, H.; Mykhailiuk, P. K.; Baran, P. S. Angew. Chem., Int. Ed. 2019, 58, 2454. (c) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; We, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature, 2017, 545, 213. (d) Cornella, J.; Edwards, J. T.; Qin, T. Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174. (e) Qin T.; Cornella, J.; Li, C.; Baran, P. S. Science 2016, 352, 801. (f) Ye, Y.; Chen, H.; Sessler, J. H.; Gong, H. J. Am. Chem. Soc. 2019, 141, 820. (g) Huihui, K. M.; Caputo, J. A.; Melchor, Z.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016. (h) Wang, P.; Zhao, B.; Yuan, Y.; Shi, Z. Chem. Commun. 2019, 55, 1971. (i) Yang, L.; Zhang, J-Y.; Duan, X-H.; Gao, P.; Jiao, J.; Guo, L-N. J. Org. Chem. 2019, 84, 8615. [8] For selected reviews on cycloketone oximes, see: (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044. (b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569. (c) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem.- Eur. J. 2018, 24, 12154. (d) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603. [9] Boivin, J.; Fouquet, E.; Zard, S. Z. J. Am. Chem. Soc. 1991, 113, 1055. [10] Boivin, J.; Schiano, A. M.; Zard, S. Z. Tetrahedron Lett. 1992, 33, 7849. [11] For selected examples on Ni-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Angelini, L.; Davies, J.; Simonetti, M.; Leonori, D. Angew. Chem., Int. Ed. 2019, 58, 5003. (b) Tang, Y.-Q.; Yang, J.-C.; Wang, L.; Guo, L.-N. Org. Lett. 2019, 21, 5178. (c) Gu, Y.-R.; Duan, X.-H.; Yang, L.; Guo, L.-N. Org. Lett. 2017, 19, 5908. (d) Ding, D.; Lan, Y.; Lin, Z.; Wang, C. Org. Lett. 2019, 21, 2723. [12] For selected examples on Cu-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Liu, Z.-L.; Shen, H.-G.; Xiao, H.-W.; Li, C.-Z. Org. Lett. 2019, 21, 5201. (b) Wang, P.-P.; Zhao, B.-L.; Yuan, Y.; Shi, Z.-Z. Chem. Commun. 2019, 55, 1971. (c) Zhao, B.; Shi, Z.-Z. Angew, Chem., Int. Ed. 2017, 56, 12727. (d) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505. (e) Zhang, J. Y.; Duan, X. H.; Yang, J. H.; Guo, L. N. J. Org. Chem. 2018, 83, 4239. (f) Ai, W.-Y; Liu, Y.-Q; Wang, Q.; Liu, Q. Org. Lett. 2018, 20, 409. [13] For selected examples on other metal-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Zhao, J.-F.; Guo, P.; Duan, X.-H.; Guo, L.-N. Adv. Synth. Catal. 2018, 360, 1775. (b) Nishimura, T.; Yoshinaka, T.; Nishiguchi, Y.; Uemura, S. Org. Lett. 2005, 7, 2425. (c) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049. [14] For selected examples on ring cleavage of cyclobutanone oximes via photocatalysis, see: (a) Lu, B.; Cheng, Y.; Chen, L.-Y.; Xiao, W.-J. ACS Catal. 2019, 9, 8159. (b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738. (c) He, Y.; Anand, D.; Sun, Z.; Zhou, L. Org. Lett. 2019, 21, 3769. (d) Li, L.-M.; Chen, H.-G.; Mei, M.-J.; Zhou, L. Chem. Commun. 2017, 53, 11544. (e) Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Yang, H. Org. Lett. 2019, 21, 2658. (f) Zhao, B.; Tan, H. Chen, C.; Jiao, N. Shi, Z.-Z. Chin. J. Chem. 2018, 36, 995. (g) Zhao, B.-L.; Chen, C.; Lv, J.-H.; Shi, Z.-Z. Org. Chem. Front. 2018, 5, 2719. (h) Shen, X.; Zhao, J.-J.; Yu, S.-Y. Org. Lett. 2018, 20, 5523. (i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 10707. (j) Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 13361. [15] (a) Zhang, J.-J.; Duan, X.-H.; Wu, Y.; Guo, L.-N. Chem. Sci. 2019, 10, 161. (b) Yin, Z.-P.; Rabeah, J.; Brückner, A.; Wu, X.-F. Org. Lett. 2019, 21, 1766. [16] (a) Shang, R.; Ji, D.-S.; Chu, L.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 4470. (b) Dalziel, M.-E.; Chen, P.-H.; Carrera, D. E.; Gosselin, F. Org. Lett. 2017, 19, 3446. (c) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170. [17] Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7, 8441. [18] Ding, D.; Wang, C. ACS Catal. 2018, 8, 11324. [19] (a) Chen, Y.-G.; Shuai, B.; Xu, X.-T.; Li, Y.-Q.; Yang, Q.-L.; Qiu, H.; Zhang, K. Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2019, 141, 3395. (b) Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033. (c) Ma, C.; Zhao, C.-Q.; Xu, X.-T.; Li, Z.-M.; Wang, X.-Y.; Zhang, K.; Mei, T.-S. Org. Lett. 2019, 21, 2464. (d) Chen, Y.-G.; Shuai, B.; Ma, C.; Zhang, X.-J.; Fang, P.; Mei, T.-S. Org. Lett. 2017, 19, 2969. [20] During preparing our manuscript, a nickel catalyzed Negishi coupling of oximes using 20% nickel catalyst was recently published: Angelini, L.; Sanz, L. M.; Leonori, D. Synlett 2019, DOI: 10. 1055/s-0039-1690690 [21] (a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (b) Xu, H.-W.; Diccianni, J. B.; Katigbak, J.; Diao, T.-N. J. Am. Chem. Soc. 2016, 138, 4779. (c) Schley, N. D.; Fu. G. C. J. Am. Chem. Soc. 2014, 136, 16588. (d) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598. (e) Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508. [22] (f) Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100. [23] (a) Yin, Z.; Rabeah, J.; Brückner, A.; Wu, X.-F. ACS Catal. 2018, 8, 10926. (b) Yu, X.-Y.; Chen, J.-R.; Wang, Z.-P.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738. (c) He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 12262. (d) Wang, P.-Z.; Yu, X.-Y.; Li, C.-Y.; He, B.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 9925. (e) Ai, W.; Liu, Y.; Wang, Q.; Lu, Z.; Liu, Q. Org. Lett. 2018, 20, 409. (f) Nakata, K.; Feng, C.; Tojo, T.; Kobayashi, Y. Tetrahedron Lett. 2014, 55, 5774. (g) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13, 1622. (h) Suga, T.; Shimazu, S.; Ukaji, Y. Org. Lett. 2018, 20, 5389. (i) Guiard, J.; Rahali, Y.; Praly, J.-P. Eur. J. Org. Chem. 2014, 21, 4461. (j) Ghosh, A. K.; Martyr, C. D.; Xu, C.-X. Org. Lett. 2012, 14, 2002. |