有机化学 ›› 2020, Vol. 40 ›› Issue (5): 1150-1176.DOI: 10.6023/cjoc201910019 上一篇 下一篇
综述与进展
刘文竹, 豆立娟, 母伟花
收稿日期:
2019-10-13
修回日期:
2019-12-23
发布日期:
2020-01-15
通讯作者:
母伟花
E-mail:weihua_mu@ynnu.edu.cn
基金资助:
Liu Wenzhu, Dou Lijuan, Mu Weihua
Received:
2019-10-13
Revised:
2019-12-23
Published:
2020-01-15
Supported by:
文章分享
由于具有较强的环张力,环丙烷能够与多种不饱和化合物发生[3+2]扩环反应构建五元碳环或五元杂环骨架结构.这些五元环化合物是许多药物、天然产物和生物活性分子的核心结构,同时也是一类重要的有机反应中间体,在医药、农业、化工、有机合成等领域具有十分广泛的用途.近年来,许多化学研究者以环丙烷作为三碳合成子,构建了结构复杂的五元碳环和五元杂环结构,促进了环丙烷领域的快速发展.对近十年来烯烃、醛酮、腈等含有不饱和键的化合物与环丙烷发生的[3+2]扩环反应进行了综述,并对该领域的发展方向进行了展望.
刘文竹, 豆立娟, 母伟花. 环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2020, 40(5): 1150-1176.
Liu Wenzhu, Dou Lijuan, Mu Weihua. Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds[J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1150-1176.
[1] Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. [2] Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004, 60, 8103. [3] Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. [4] Bach, R. D.; Dmitrenko, O. J. Org. Chem. 2002, 67, 2588. [5] Wang, L.; Xu, J.-H. Chin. J. Org. Chem. 2003, 23, 750(in Chinese). (王磊, 徐建华, 有机化学, 2003, 23, 750.) [6] Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321. [7] Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117. [8] Yuan, M.-F.; Chen, Y.-L.; Ding, W.-Y.; Cao, W.-G. Chin. J. Org. Chem. 2003, 23, 901(in Chinese). (袁美斐, 陈雅丽, 丁维钰, 曹卫国, 有机化学, 2003, 23, 901.) [9] De Simone, F.; Waser, J. Synthesis 2009, 3353. [10] Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797. [11] Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293. [12] Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804. [13] De Nanteuil, F.; de Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912. [14] Pandey, A. K.; Ghosh, A.; Banerjee, P. Isr. J. Chem. 2016, 56, 512. [15] Pagenkopf, B. L.; Vemula, N. Eur. J. Org. Chem. 2017, 2017, 2561. [16] Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655. [17] Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504. [18] Rassadin, V. A.; Six, Y. Tetrahedron 2016, 72, 4701. [19] Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493. [20] Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. [21] Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051. [22] De Simone, F.; Waser, J. Synlett 2011, 589. [23] Tang, P.; Qin, Y. Synthesis 2012, 44, 2969. [24] Wang, Z. Synlett 2012, 23, 2311. [25] Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260. [26] Wang, L.; Zhou, J.; Tang, Y. Chin. J. Chem. 2018, 36, 1123. [27] Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659. [28] De Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075. [29] De Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Chem. Soc. 2014, 136, 6239. [30] Waser, J.; Serrano, E.; de Nanteuil, F. Synlett 2014, 25, 2285. [31] Racine, S.; de Nanteuil, F.; Serrano, E.; Waser, J. Angew. Chem., Int. Ed. 2014, 53, 8484. [32] Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626. [33] Verma, K.; Banerjee, P. Adv. Synth. Catal. 2016, 358, 2053. [34] Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304. [35] Verma, K.; Banerjee, P. Adv. Synth. Catal. 2017, 359, 3848. [36] Volkova, Y. A.; Budynina, E. M.; Kaplun, A. E.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Y. Chem.-Eur. J. 2013, 19, 6586. [37] Chagarovskiy, A. O.; Budynina, E. M.; Ivanova, O. A.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Tetrahedron 2009, 65, 5385. [38] Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Grishin, Y. K.; Trushkov, I. V.; Melnikov, M. Y. J. Org. Chem. 2015, 80, 12212. [39] Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851. [40] Yan, W.; Wang, P.; Wang, L.; Sun, X.; Tang, Y. Acta Chim. Sinica 2017, 75, 783(in Chinese). (严文广, 王盼, 王丽佳, 孙秀丽, 唐勇, 化学学报, 2017, 75, 783.) [41] Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed. 2016, 55, 10061. [42] Pandey, A. K.; Varshnaya, R. K.; Banerjee, P. Eur. J. Org. Chem. 2017, 2017, 1647. [43] Xia, X.-F.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Asian J. 2012, 7, 1538. [44] Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032. [45] Wang, Z.; Ren, J.; Wang, Z. Org. Lett. 2013, 15, 5682. [46] Thangamani, M.; Srinivasan, K. J. Org. Chem. 2018, 83, 571. [47] Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z.-B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900. [48] Mukherjee, P.; Das, A. R. J. Org. Chem. 2017, 82, 2794. [49] Jackson, S. T.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196. [50] Curiel Tejeda, J. E.; Irwin, L. C.; Kerr, M. A. Org. Lett. 2016, 18, 4738. [51] Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688. [52] Alajarin, M.; Egea, A.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275. [53] Feng, M.; Yang, P.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2017, 83, 174. [54] Tsunoi, S.; Maruoka, Y.; Suzuki, I.; Shibata, I. Org. Lett. 2016, 47, 4010. [55] Preindl, J.; Chakrabarty, S.; Waser, J. Chem. Sci. 2017, 8, 7112. [56] Zhang, M.-C.; Wang, D.-C.; Xie, M.-S.; Qu, H.-M.; Guo, H.-M.; You, S.-L. Chem. 2019, 5, 156. [57] Hao, E.-J.; Fu, D.-D.; Wang, D.-C, Zhang, T.; Qu, G.-R.; Li, G.-X.; Lan, Y.; Guo, H.-M. Org. Chem. Front. 2019, 6, 863. [58] Akaev, A. A.; Bezzubov, S. I.; Desyatkin, V. G.; Vorobyeva, N. S.; Majouga, A. G.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2019, 84, 3340. [59] Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642. [60] Kreft, A.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 2059. [61] Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122. [62] Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996. [63] Christie, S. D. R.; Cummins, J.; Elsegood, M. R. J.; Dawson, G. Synlett 2009, 257. [64] Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386. [65] Benfatti, F.; de Nanteuil, F.; Waser, J. Chem.-Eur. J. 2012, 18, 4844. [66] Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann. M. Org. Lett. 2013, 15, 2262. [67] Rivero, A. R.; Fernandez, I.; Arellano, C. R. D.; Sierra, M. A. J. Org. Chem. 2014, 80, 1207. [68] Sabbatani, J.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 6780. [69] Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2010, 76, 229. [70] Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393. [71] Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 1040. [72] Sanders, S. D.; Ruiz-Olalla, A.; Johnson, J. S. Chem. Commun. 2009, 34, 5135. [73] Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549. [74] Xu, X.; Lu, H.; Ruppel, J. V.; Cui, X.; Lopea de Mesa, S.; Wojtas, L.; Zhang, X. J. Am. Chem. Soc. 2011, 133, 15292. [75] Yang, P.; Shen Y.; Feng, M.; Yang, G.; Chai, Z. Eur. J. Org. Chem. 2018, 4103. [76] Shen, Y.; Yang, P.-F.; Yang, G.; Chen, W.-L.; Chai, Z. Org. Biomol. Chem. 2018, 16, 2688. [77] Ma, X.; Tang, Q.; Ke, J.; Yang, X.; Zhang, J.; Shao, H. Org. Lett. 2013, 15, 5170. [78] Ma, X.; Zhang, J.; Tang, Q.; Ke, J.; Zou, W.; Shao, H. Chem. Commun. 2014, 50, 3505. [79] Zhu, W.; Ren, J.; Wang, Z. Eur. J. Org. Chem. 2014, 2014, 3561. [80] Ren, J.; B, J.; Ma, W.; Wang, Z. Synlett 2014, 25, 2260. [81] Zhang, J.; Xing, S.; Ren, J.; Jiang, S.; Wang, Z. Org. Lett. 2014, 17, 218. [82] Wang, Z.; Chen, S.; Ren, J.; Wang, Z. Org. Lett. 2015, 17, 4184. [83] Wang, H.; Yang, W.; Liu, H.; Wang, W.; Li, H. Org. Biomol. Chem. 2012, 10, 5032. [84] Goldberg, A. F. G.; O'Connor, N. R.; Craig II, R. A.; Stoltz, B. M. Org. Lett. 2012, 14, 5314. [85] Sun, Y.; Yang, G.; Chai, Z.; Mu, X.; Chai, J. Org. Biomol. Chem. 2013, 11, 7859. [86] Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293. [87] Augustin, A. U.; Busse, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 820. [88] Xie, M.-S.; Zhao, G.-F.; Qin, T.; Suo, Y.-B.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2019, 55, 1580. [89] Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 5964. [90] Wang, Z.; Zhang, H.; Xu, P; Luo, Y. Chem. Commun. 2018, 54, 10128. [91] Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 7178. [92] Jiao, L.; Lin, M.; Yu, Z.-X. Chem. Commun. 2010, 46, 1059. [93] Li, Q.; Jiang G.; Jiao, L.; Yu, Z.-X. Org. Lett. 2010, 12, 1332. [94] Lin, M.; Kang, G.-Y.; Guo, Y.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2012, 134, 398. [95] Luo, Z.; Zhou, B.; Li, Y. Org. Lett. 2012, 14, 2540. [96] Zhang, H.; Jeon, K. O.; Hay, E.; Geib, S.; Curran, D.; LaPorte, M. Org. Lett. 2014, 16, 94. [97] Chen, H.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098. [98] Goldberg, A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 4474. [99] Wei, F.; Ren, C.-L.; Wang, D.; Liu, L. Chem.-Eur. J. 2015, 21, 2335. [100] Li, W.-K.; Liu, Z.-S.; He, L.; Kang, T.-R.; Liu, Q.-Z. Asian. J. Org. Chem. 2015, 4, 28. [101] Trost, B. M.; Morris, P. J. Angew. Chem., Int. Ed. 2011, 50, 6167. [102] Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823. [103] Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2012, 31, 7591. [104] Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; Hao, E.-J.; Zhang, M.-Z.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451. [105] Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408. [106] Gee, Y. S.; Rivinoja, D. J.; Wales, S. M.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. J. Org. Chem. 2017, 82, 13517. [107] Ding, W.-P.; Zhang, G.-P.; Jiang, Y.-J.; Du, J.; Liu, X.-Y.; Chen, D.; Ding, C.-H.; Deng, Q.-H.; Hou, X.-L. Org. Lett. 2019, 21, 6805. [108] Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067. [109] Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2281. [110] Liu, Q.-S.; Wang, D.; Yang, Z.; Luan, Y.; Yang, J.; Li, J.; Pu, Y.; Ye, M. J. Am. Chem. Soc. 2017, 139, 18150. [111] Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048. [112] Hao, W.; Harenberg, J. H.; Wu, X.; MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2018, 140, 3514. [113] Yang, J.; Shen, Y.; Lim, Y. J.; Yoshikai, N. Chem. Sci. 2018, 9, 6928. [114] Yang, J.; Sun, Q.; Yoshikai, N. ACS Catal. 2019, 9, 1973. [115] Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541. [116] Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544. [117] Huang, X.-B.; Li, X.-J.; Li, T.-T.; Chen, B.; Chu, W.-D.; He, L.; Liu, Q.-Z. Org. Lett. 2019, 21, 1713. [118] Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758. [119] Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791. [120] Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162. [121] Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722. [122] Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222. [123] Nguyen, T. H.; Maity, S.; Zheng, N. Beilstein J. Org. Chem. 2014, 10, 975. [124] Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356, 2831. [125] Sasaki, M.; Kondo, Y.; Nishio, T.; Takeda, K. Org. Lett. 2016, 18, 3858. [126] Blom, J.; Vidal-Albalat, A.; Jørgensen, J.; Barløse, C. L.; Jessen, K. S.; Iversen, M. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2017, 56, 11831. [127] Kamlar, M.; Franc, M.; Císařová, I.; Gyepes, R.; Veselý, J. Chem. Commun. 2019, 55, 3829. [128] Pan, D.; Mou, C.; Zan, N.; Lv, Y.; Song, B.-A.; Chi, Y. R.; Jin, Z. Org. Lett. 2019, 21, 6624. [129] Cui, B.; Ren, J.; Wang, Z. J. Org. Chem. 2014, 79, 790. [130] Gladow, D.; Reissig, H.-U. J. Org. Chem. 2014, 79, 4492. [131] Zaytsev, S. V.; Ivanov, K. L.; Skvortsov, D. A.; Bezzubov, S. I.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2018, 83, 8695. |
[1] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[2] | 陈文龙, 李慧敏, 杨鹏飞, 郑东程, 杨高升. 2-芳甲酰基甲亚基丙二酸酯与Corey叶立德的反应[J]. 有机化学, 2023, 43(4): 1472-1482. |
[3] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
[4] | 刘悦灵, 钟欣欣, 张干兵. Pd(0)催化1-R-3-苯基亚丙基环丙烷(R=Me/H)与呋喃甲醛[3+2]环加成反应机理的密度泛函理论研究[J]. 有机化学, 2023, 43(2): 660-667. |
[5] | 郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074. |
[6] | 南宁, 吴双, 秦景灏, 李金恒. 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023, 43(10): 3414-3453. |
[7] | 姜松, 南宁, 何景昊, 郭嘉程, 秦景灏, 谢叶香, 欧阳旋慧, 宋仁杰. 基于芳基重氮盐的芳基自由基介导的不饱和键环化反应研究进展[J]. 有机化学, 2022, 42(12): 3959-3978. |
[8] | 郑汉良, 苏静雯, 周雨露, 朱钢国. 全碳体系的5-endo-Trig自由基环化反应研究进展[J]. 有机化学, 2022, 42(12): 4060-4066. |
[9] | 崔玉成, 陈美桦, 林桂汕, 段文贵, 李晴敏, 邹壬萱, 岑波. 含偕二甲基环丙烷结构的1,3,4-噻二唑-脲化合物的合成、抑菌活性及分子对接研究[J]. 有机化学, 2022, 42(11): 3784-3797. |
[10] | 刘晨光, 刘强. 丰产金属催化的碳氮不饱和键不对称氢化反应[J]. 有机化学, 2022, 42(10): 3213-3220. |
[11] | 杜青锋, 张璐, 高峰, 王乐, 张万斌. 过渡金属催化氧/氮杂环丙烷不对称开环反应的研究进展[J]. 有机化学, 2022, 42(10): 3240-3262. |
[12] | 陈睿嘉, 周聪, 逄锡文, 刘佳君, 顾玉诚, 刘建文, 李忠. 以环丙烷限制构象的新型双酰胺的设计、合成、抗癌活性及计算分析[J]. 有机化学, 2022, 42(1): 277-292. |
[13] | 王鹏, 杨妲, 刘欢. 一氧化碳参与β-内酰胺化合物合成的研究进展[J]. 有机化学, 2021, 41(9): 3448-3458. |
[14] | 仇裕鹤, 鲁康辉, 韦邦尺, 潜振凯, 贺峥杰. 三价磷介导的分子内环丙烷化反应及环丙烷并[c]香豆素的合成[J]. 有机化学, 2021, 41(10): 4066-4074. |
[15] | 刘峰, 戴洁, 程旭. 芳基碘介导的缺电子烯烃电化学氮杂环丙烷化反应[J]. 有机化学, 2021, 41(10): 4014-4020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||