有机化学 ›› 2020, Vol. 40 ›› Issue (7): 1912-1925.DOI: 10.6023/cjoc201912044 上一篇 下一篇
综述与进展
徐鑫明a, 杨翰林a, 李文忠a
收稿日期:
2019-12-31
修回日期:
2020-03-16
发布日期:
2020-04-09
通讯作者:
徐鑫明
E-mail:xin_mingxu@163.com
基金资助:
Xu Xinminga, Yang Hanlina, Li Wenzhonga
Received:
2019-12-31
Revised:
2020-03-16
Published:
2020-04-09
Supported by:
文章分享
由于其广泛存在于天然产物、生物活性分子及功能有机材料中,芳基和烯基硫化物受到医学与化学科学家们的广泛关注,其合成也得到了快速发展.在众多合成方法中,通过无过渡金属催化的C—H键巯基化反应来构筑C—S键是最为理想的,并且已经展现出其应用前景.近些年,关于该合成策略的研究层出不穷,许多精致的合成方法得到发展,一系列巯基化的芳烃或烯烃被合成.该综述介绍了近五年关于芳烃和烯烃在无过渡金属催化条件下的巯基化反应的研究进展,并阐述相应的反应机理.
徐鑫明, 杨翰林, 李文忠. 无过渡金属的烯烃和芳烃C—H键的巯基化反应[J]. 有机化学, 2020, 40(7): 1912-1925.
Xu Xinming, Yang Hanlin, Li Wenzhong. Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1912-1925.
[1] (a) Kvasnika, M.; Urban, M.; Dickinson, N. J.; Sarek, J. Nat. Prod. Rep. 2015, 32, 1303. (b) Meng, D.; Chen, W.; Zhao, W. J. Nat. Prod. 2007, 70, 824. (c) Cremlyn, R. J. An Introduction to Organosulfur Chemistry, Wiley, New York, 1996. (d) Iino, H.; Usui, T.; Hanna, J.-I. Nat. Commun. 2015, 5, 6828. (e) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 11, 1596. [2] (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. (b) Kim, S.; Dahal, N.; Kesharwani, T. Tetrahedron Lett. 2013, 54, 4373. [3] (a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486. (b) Wu, D.; Pisula, W.; Haberecht, M. C.; Feng, X.; Müllen, K. Org. Lett. 2009, 11, 5686. (c) Yang, S. M.; Shie, J. J.; Fang, J. M.; Nandy, S. K.; Chang, Y. Y. J. Org. Chem. 2002, 67, 5208. [4] (a) Carretero, J. C. Chem. Commun. 2011, 47, 2207. (b) Pellisier, H. RSC Catalysis Series 2, Royal Society of Chemistry, Cambridge, 2009. [5] (a) Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Pol. Rev. 2014, 54, 185. (b) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471. (c) Spassky, N. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 71. [6] (a) Hartwig, J. F. Nature 2008, 455, 314. (b) Lu, Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156. (c) Lu, Q.-Q.; Zhang, J.; Zhao, G.-L.; Qi, Y.; Wang, H.-M.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. [7] (a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 2007, 3431. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291. [8] (a) Zhang, S.-N.; Yang, S.-H.; Huang, L.-H.; Zhao, B.-L.; Cheng, K.; Qi, C.-Z. Chin. J. Org. Chem. 2015, 35, 2259(in Chinese). (张诗浓, 杨胜虎, 黄乐浩, 赵保丽, 程凯, 齐陈泽, 有机化学, 2015, 35, 2259.) (b) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 3338(in Chinese). (徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, 3338.) (c) Dalpozzo, R. Org. Chem. Front. 2017, 4, 2063. (d) Freckleton, M.; Baeza, A.; Benavent, L.; Chinchilla, R. Asian J. Org. Chem. 2018, 7, 1006. (e) Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.- J. J. Org. Chem. 2015, 80, 8217. (f) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2016, 81, 3321. [9] (a) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.) (b) Dong, D.-Q.; Hao, S.-H.; Yang, D.-S.; Li, L.-X.; Wang, Z.-L. Eur. J. Org. Chem. 2017, 2017, 6576. (c) Xu, X.-M.; Li, J.; Wang, Z.-L. Chin. J. Org. Chem. 2020, 40, 886(in Chinese). (徐鑫明, 李家柱, 王祖利, 有机化学, 2020, 40, 886.) (d) Jin, C.-A.; Xu, Q.; Feng, G.-F.; Jin, Y.; Zhang, L.-Y. Chin. J. Org. Chem. 2018, 38, 775(in Chinese). (金城安, 徐庆, 冯高峰, 金阳, 张连阳, 有机化学, 2018, 38, 775.) (e) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. Chem. Lett. 2020, 31, 49. [10] (a) Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod. 2007, 70, 439. (b) Nielsen, S. F.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217. (c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900. [11] (a) Varun, B. V.; Gadde, K.; Prabhu, K. R. Org. Lett. 2015, 17, 2944. (b) Cao, H.; Yuan, J.; Liu, C.; Hu, X.-Q.; Lei, A.-W. RSC Adv. 2015, 5, 41493. (c) Siddaraju, Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090. (d) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2018, 83, 2986. (e) Wang, D.; Liu, Z.; Wang, Z.; Ma, X.; Yu, P. Green Chem. 2019, 21, 157. (f) Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Green Chem. 2019, 21, 798. [12] (a) Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984. (b) Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen, D.; Fan, X.-L. RSC Adv. 2017, 7, 37739. (c) Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahedron 2015, 71, 8885. (d) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371. [13] (a) Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937. (b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838. (c) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291. (d) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49. (e) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141. [14] Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068. [15] Wang, H.-H.; Shi, T.; Gao, W.-W.; Wang, Y.-Q.; Li, J.-F.; Jiang, Y.; Hou, Y.-S.; Chen, C.; Peng, X.; Wang, Z. Chem. Asian J. 2017, 12, 2675. [16] Xiao, F.-H.; Tian, J.-X.; Xing, Q.-Y.; Huang, H.-W.; Deng, G.-J.; Liu, Y.-J. ChemistrySelect 2017, 2, 428. [17] (a) Shanmugapriya, J.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Eur. J. Org. Chem. 2016, 2016, 1963. (b) Huang, W.; Yang, G.-F. Bioorg. Med. Chem. 2006, 14, 8280. [18] Kong, D.-L.; Huang, T.; Liang, M.; Wu, M.-S.; Lin, Q. Org. Biomol. Chem. 2019, 17, 830. [19] Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.-G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493. [20] (a) Liu, Y.; Badsara, S. S.; Liu, Y.; Lee, C. RSC Adv. 2015, 5, 44299. (b) Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 1520. (c) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 79. (d) Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659. [21] Rodrigues, J.; Saba, S.; Joussef, A. C.; Rafique, J.; Braga, A. L. Asian J. Org. Chem. 2018, 5, 1819. [22] Hazarika, S.; Gogoi, P.; Barman, P. RSC Adv. 2015, 5, 25765. [23] Kawashima, H.; Yanagi, T.; Wu, C.-C.; Nogi, K.; Yorimitsu, H. Org. Lett. 2017, 19, 4552. [24] Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898. [25] Nalbandian, C. J.; Brown, Z. E.; Alvarez, E.; Gustafson, J. L. Org. Lett. 2018, 20, 3211. [26] Böhm, M. J.; Golz, C.; Rüter, I.; Alcarazo, M. Chem.-Eur. J. 2018, 24, 15026. [27] (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432. (d) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941. [28] (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415. (b) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227. (c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731. (d) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445. [29] Jereb, M.; Gosak, K. Org. Biomol. Chem. 2015, 13, 3103. [30] Horvat, M.; Jereb, M.; Iskra, J. Eur. J. Org. Chem. 2018, 2018, 3837. [31] Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Ouamba, J.-M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem., Int. Ed. 2017, 56, 169. [32] Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372. [33] Lu, S.; Chen, W.; Shen, Q. Chin. Chem. Lett. 2019, 30, 2279. [34] Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486. [35] Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. M. RSC Adv. 2015, 5, 108030. [36] Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538. [37] Xu, Z.; Lu, G.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804. [38] Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100. [39] Yan, Q.; Jiang, L.; Yi, W.-B.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471. [40] Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934. [41] (a) Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175. (b) Zhao, X.; Zheng, X.; Tian, M.; Sheng, J.; Tong, Y.; Lu, K. Tetrahedron 2017, 73, 7233. [42] Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467. [43] Liu, J.; Zhao, X.; Jiang, L.; Yi, W.-B. Adv. Synth. Catal. 2018, 360, 4012. [44] Fernandez-Salas, J.; Pulis, A.; Procter, D. J. Chem. Commun. 2016, 52, 12364. [45] Chen, D.; Feng, Q.; Yang, Y.; Cai, X.; Wang, F.; Huang, S. Chem. Sci. 2017, 8, 1601. [46] (a) Yang, X.; Yan, R. Org. Biomol. Chem. 2017, 15, 3571. (b) Wang, T.; Yang, F.; Tian, S. Adv. Synth. Catal. 2015, 357, 928. (c) Rahaman, R.; Devi, N.; Sarmaa, K.; Barman, P. RSC Adv. 2016, 6, 10873. (d) Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314. (e) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697. [47] Pang, X.; Xiang, L. K.; Yang, X. D.; Yan, R. L. Adv. Synth. Catal. 2016, 358, 321. [48] Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131. [49] Zhao, X.; Deng, Z. J.; Wei, A. Q.; Li, B. Y.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304. [50] (a) Wang, D. Y.; Guo, S. M.; Zhang, R. X.; Lin, S.; Yan, Z. H. RSC Adv. 2016, 6, 54377. (b) Wang, D. Y.; Zhang, R. X.; Lin, S.; Deng, R. H.; Yan, Z. H. Chin. J. Org. Chem. 2016, 36, 2757(in Chinese). (王丁意, 张荣兴, 林森, 邓瑞红, 严兆华, 有机化学, 2016, 36, 2757.) [51] Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Chem. Sci. 2018, 9, 5781. [52] Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315. [53] (a) Wadman, M. Nature 2006, 440, 277 (b) Williams, R. B.; Norris, A.; Slebodnick, C.; Merola, J.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. J. Nat. Prod. 2005, 68, 1371. (c) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. (d) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2016, 18, 6424. [54] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Niu, B.; Ding, Y. RSC Adv. 2015, 5, 59861. [55] Ding, Y.; Zhao, W.; Li, Y.; Xie, P.; Wu, W.; Zhou, A.; Huang, Y.; Liu, Y. Org. Biomol. Chem. 2016, 14, 1428. [56] Guo, T. Synth. Commun. 2017, 47, 2053. [57] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.-H.; Ge, H.-B.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167. [58] Liu, W.-J.; Wang, S.-H.; Cai, Z.-H.; Li, Z.-Y.; Liu, J.-W.; Wang, A.-D. Synlett 2018, 29, 116. [59] Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584. [60] Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371. [61] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084. [62] Xiao, F.-H.; Wang, D.; Yuan, S.; Huang, H.; Deng, G.-J. RSC Adv. 2018, 8, 23319. [63] Fu, H.; Zhao, B.-T.; Zhu, W.-M. Tetrahedron Letters 2019, 60, 124. [64] Yang, F.-L.; Gui, Y.; Yu, B.-K.; Jin, Y.-X.; Tian, S.-K. Adv. Synth. Catal. 2016, 358, 3368. [65] (a) Bao, Y.; Yang, X.-Q.; Zhou, Q.-F.; Yang, F. L.; Org. Lett. 2018, 20, 1966. (b) Bao, Y.; Zhong, L.-Y.; Hou, Q.; Zhou, Q.-F.; Yang, F.-L. Chin. J. Chem. 2018, 36, 1063. [66] Deng, L.-L.; Liu, Y.-Y. ACS Omega 2018, 3, 11890. [67] Guo, T.; Wei, X.-N. Synlett 2017, 28, 2499. [68] Yang, Z.; Yan, Y.; Li, A.; Liao, J.; Zhang, L.; Yang, T.; Zhou, C. New J. Chem. 2018, 42, 14738. [69] Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708. [70] Bu, M.; Lu, G.; Cai, C. Org. Chem. Front. 2017, 4, 266. [71] Li, G.; Zhang, G.; Deng, X.; Qu, K.; Wang, H.; Wei, W.; Yang, D. Org. Biomol. Chem. 2018, 16, 8015. |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[3] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[4] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[5] | 徐忠荣, 万结平, 刘云云. 基于热、光以及电化学过程的无过渡金属碳-氢键硫氰化和硒氰化反应[J]. 有机化学, 2023, 43(7): 2425-2446. |
[6] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
[7] | 吴孔川, 卢铠洪, 林建斌, 张慧君. 莱啉酰亚胺类化合物的邻位C—H键功能化研究进展[J]. 有机化学, 2023, 43(3): 1000-1011. |
[8] | 潘彦年, 秦萧, 袁成凯, 鲁艺. 配体在Cp*Rh(III)催化C—H键官能团化反应中的应用[J]. 有机化学, 2023, 43(3): 924-948. |
[9] | 王睿, 高朗, 周岑, 张霄. 苯基吩噻嗪多孔有机聚合物催化的非活化末端烯烃的卤代全氟烷基化反应[J]. 有机化学, 2023, 43(3): 1136-1145. |
[10] | 刘悦灵, 钟欣欣, 张干兵. Pd(0)催化1-R-3-苯基亚丙基环丙烷(R=Me/H)与呋喃甲醛[3+2]环加成反应机理的密度泛函理论研究[J]. 有机化学, 2023, 43(2): 660-667. |
[11] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[12] | 孙婧, 张萌萌, 锅小龙, 王琪, 王陆瑶. 无过渡金属条件下二芳基硒化合物的合成[J]. 有机化学, 2023, 43(12): 4251-4260. |
[13] | 王芳, 王磊. 基于N-亚硝基导向的芳烃C(sp2)—H键官能团化研究进展[J]. 有机化学, 2023, 43(12): 4157-4167. |
[14] | 李奇阳, 张海燕, 刘文博. 无过渡金属参与的碳硅键构筑方法研究进展[J]. 有机化学, 2023, 43(10): 3470-3490. |
[15] | 陈泗林, 杨芸辉, 陈超, 王从洋. 过渡金属催化的酮羰基导向C—H键官能化反应进展[J]. 有机化学, 2023, 43(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||