有机化学 ›› 2020, Vol. 40 ›› Issue (11): 3656-3671.DOI: 10.6023/cjoc202006052 上一篇 下一篇
所属专题: 创刊四十周年专辑
综述与进展
常凯a, 李倩倩a, 李振a,b
收稿日期:
2020-06-24
修回日期:
2020-08-07
发布日期:
2020-08-19
通讯作者:
李倩倩, 李振
E-mail:qianqian-alinda@163.com;lizhen@whu.edu.cn
基金资助:
Chang Kaia, Li Qianqiana, Li Zhena,b
Received:
2020-06-24
Revised:
2020-08-07
Published:
2020-08-19
Supported by:
文章分享
近年来,力致发光作为一种独特的发光现象,发展迅速,在应力检测、防伪加密、新型光源、生物成像等方面展现出巨大的应用前景.随着人们对分子聚集态科学的关注,特别是对有机分子固态下的排列和堆积方式、分子间相互作用等方面的深入认识,有机力致发光材料近几年发展迅速,并逐步实现多场景下的应用.从力致发光现象与机理出发,讨论了有机力致发光现象与分子聚集态的关系,简要介绍了力致发光的测试表征手段、施加应力大小与力致发光强度的关系和力致发光颜色等,着重介绍了目前力致发光的应用,并对力致发光材料进行了总结与展望.
常凯, 李倩倩, 李振. 力致发光现象及其应用研究进展[J]. 有机化学, 2020, 40(11): 3656-3671.
Chang Kai, Li Qianqian, Li Zhen. Advances in Mechanoluminescence and Its Applications[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3656-3671.
[1] (a) Bacon, F. The Advancement of Learning, Press of P. F Collier & Son, New York, 1901, pp. 208~209. (b) Feng, A.; Smet, A. P. F. Materials 2018, 11, 484. [2] Xie, Y.; Li, Z. Chem 2018, 4, 943. [3] Sakai, K.; Koga, T.; Imai, Y.; Maehara, S.; Xu, C. N. Phys. Chem. Chem. Phys. 2006, 8, 2819. [4] Lavrov, A. Strain 2005, 41, 135. [5] Zhang, J.-C.; Wang, X.; Marriott, G.; Xu, C.-N. Prog. Mater. Sci. 2019, 103, 678. [6] Chandra, B. P.; Rathore, A. S. Cryst. Res. Technol. 1995, 30, 885. [7] Bünzli, J.-C. G.; Wong, K.-L. J. Rare Earths 2018, 36, 1. [8] Zhang, H.; Wei, Y.; Huang, X.; Huang, W. J. Lumin. 2019, 207, 137. [9] Chandra, B. P.; Chandra, V. K.; Jha, P.; Patel, R.; Shende, S. K.; Thaker, S.; Baghel, R. N. J. Lumin. 2012, 132, 2012. [10] Chandra, B. P.; Chandra, V. K.; Jha, P. J. Lumin. 2013, 135, 139. [11] Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740. [12] Dang, Q.; Hu, L.; Wang, J.; Zhang, Q.; Han, M.; Luo, S.; Gong, Y.; Wang, C.; Li, Q.; Li, Z. Chem.-Eur. J. 2019, 25, 7031. [13] Liu, F.; Tu, Z.; Fan, Y.; Li, Q.; Li, Z. ACS Omega 2019, 4, 18609. [14] Li, W.; Huang, Q.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z.; Xu, R.; Yang, Z.; Zhao, J.; Yu, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 12727. [15] Wang, J.; Chai, Z.; Wang, J.; Wang, C.; Han, M.; Liao, Q.; Huang, A.; Lin, P.; Li, C.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2019, 58, 17297. [16] Yan, C.; Yang, F.; Wu, M.; Yuan, Y.; Chen, F.; Chen, Y. Macromolecules 2019, 52, 9376. [17] Yuan, Y.; Yuan, W.; Chen, Y. Sci. China Mater. 2016, 59, 507. [18] Chakravarty, A.; Phillipson, T. E. J. Phys. D:Appl. Phys. 2004, 37, 2175. [19] Xie, Y.; Li, Z. Mater. Chem. Front. 2020, 4, 317. [20] Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962. [21] Chandra, B. P.; Chandra, V. K.; Jha, P. Phys. B 2015, 463, 62. [22] Zhang, J.-C.; Long, Y.-Z.; Yan, X.; Wang, X.; Wang, F. Chem. Mater. 2016, 28, 4052. [23] Wang, X.; Xu, C. N.; Yamada, H.; Nishikubo, K.; Zheng, X. G. Adv Mater. 2005, 17, 1254. [24] Chandra, B. P.; Bagri, A. K.; Chandra, V. K. J. Lumin. 2010, 130, 309. [25] Li, Q.; Tang, Y.; Hu, W.; Li, Z. Small 2018, 14, 1801560. [26] Li, Q. Q.; Li, Z. Sci. China Mater. 2020, 63, 177. [27] Wang, Y.; Yang, J.; Tian, Y.; Fang,M.; Liao, Q.; Wang, L.; Hu, W.; Tang, B. Z.; Li, Z. Chem. Sci. 2020, 11, 833. [28] Tian, Y.; Gong, Y.; Liao, Q.; Wang, Y.; Ren, J.; Fang, M.; Yang, J.; Li, Z. Cell Rep. Phys. Sci. 2020, 1, 100052. [29] Liu, F.; Wu, F.; Ling, W.; Tu, Z.; Zhang, J.; Wei, Z.; Zhu, L.; Li, Q.; Li, Z. ACS Energy Lett. 2019, 4, 2514. [30] Tu, J.; Liu, C.; Fan, Y.; Liu, F.; Chang, K.; Xu, Z.; Li, Q.; Chen, Y.; Li, Z. J. Mater. Chem. A 2019, 7, 15662. [31] Xie, Y.; Gong, Y.; Han, M.; Zhang, F.; Peng, Q.; Xie, G.; Li, Z. Macromolecules 2019, 52, 896. [32] Li, Y.; Han, M.; Yang, W.; Guo, J.; Chang, K.; Wang, J.; Min, J.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 1840. [33] Zink, J. I.; Hardy, G. E.; Sutton, J. E. J. Phys. Chem. 1976, 80, 248. [34] Tu, J.; Fan, Y.; Wang, J.; Li, X.; Liu, F.; Han, M.; Wang, C.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 12256. [35] Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9879. [36] Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53, 11330. [37] Liu, F.; Tu, J.; Wang, X.; Wang, J.; Gong, Y.; Han, M.; Dang, X.; Liao, Q.; Peng, Q.; Li, Q.; Li, Z. Chem. Commun. 2018, 54, 5598. [38] Huang, G.; Jiang, Y.; Wang, J.; Li, Z.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2019, 7, 12709. [39] Wang, C.; Yu, Y.; Chai, Z.; He, F.; Wu, C.; Gong, Y.; Han, M.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 32. [40] Gong, Y.; Zhang, P.; Gu, Y.; Wang, J.; Han, M.; Chen, C.; Zhan, X.; Xie, Z.; Zou, B.; Peng, Q.; Chi, Z.; Li, Z. Adv. Opt. Mater. 2018, 6, 1800198. [41] Mu, Y.; Yang, Z.; Chen, J.; Yang, Z.; Li, W.; Tan, X.; Mao, Z.; Yu, T.; Zhao, J.; Zheng, S.; Liu, S.; Zhang, Y.; Chi, Z.; Xu, J.; Aldred, M. P. Chem. Sci. 2018, 9, 3782. [42] Li, W.; Huang, Q.; Mao, Z.; Zhao, J.; Wu, H.; Chen, J.; Yang, Z.; Li, Y.; Yang, Z.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2020, 59, 3739. [43] Yu, Y.; Wang, C.; Wei, Y.; Fan, Y.; Yang, J.; Wang, J.; Han, M.; Li, Q.; Li, Z. Adv. Optical Mater. 2019, 7. 1900505. [44] Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan, Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3, 133. [45] Yu, Y.; Fan, Y.; Wang, C.; Wei, Y.; Liao, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 13759. [46] Wang, C.; Yu, Y.; Yuan, Y.; Ren, C.; Liao, Q.; Wang, J.; Chai, Z.; Li, Q.; Li, Z. Matter 2020, 2, 181. [47] Fontenot, R. S.; Hollerman, W. A.; Aggarwal, M. D.; Bhat, K. N.; Goedeke, S. M. Measurement 2012, 45, 431. [48] Hollerman, W. A.; Fontenot, R. S.; Bhat, K. N.; Aggarwal, M. D.; Guidry, C. J.; Nguyen, K. M. Opt. Mater. 2012, 34, 1517. [49] Zhang, J.-C.; Xu, C.-N.; Wang, X.; Long, Y.-Z. Chem. Mater. 2014, 28, 4052. [50] Terasaki, N.; Xu, C.-N. J. Colloid Interf. Sci. 2014, 427, 62. [51] Zhang, J.-C.; Xu, C.-N.; Kamimura, S.; Terasawa, Y.; Yamada, H.; Wang, X. Opt. Express 2013, 21, 12976. [52] Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 880. [53] Chen, Y.; Xu, C.; Xu, B.; Mao, Z.; Li, J.-A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; Zhang, Y.; Chi, Z. Mater. Chem. Front. 2019, 3, 1800. [54] Xiong, P.; Peng, M.; Cao, J.; Li, X. J. Am. Ceram. Soc. 2019, 102, 5899. [55] Xie, Z.; Yu, T.; Chen, J.; Ubba, E.; Wang, L.; Mao, Z.; Su, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2018, 9, 5787. [56] Sun, Q.; Zhang, K.; Zhang, Z.; Tang, L.; Xie, Z.; Chi, Z.; Xue, S.; Zhang, H.; Yang, W. Chem. Commun. 2018, 54, 8206. [57] Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 14174. [58] Yang, J.; Fang, M.; Li, Z. InfoMat 2020, 2, 791. [59] Wang, J.; Wang, C.; Gong, Y.; Liao, Q.; Han, M.; Jiang, T.; Dang, Q.; Li, Y.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 16821. [60] Jeong, S. M.; Song, S.; Lee, S. K.; Ha, N. Y. Adv. Mater. 2013, 25, 6194. [61] Peng, D.; Chen, B.; Wang, F. Chempluschem 2015, 80, 1209. [62] Kim, Y.; Kim, J. S.; Kim, G. W. Sci. Rep. 2018, 8, 12023. [63] Kim, Y.; Roy, S.; Jung, G. Y.; Oh, J. S.; Kim, G. W. Sci. Rep. 2019, 9, 15215. [64] Jiang, Y.; Wang, F.; Zhou, H.; Fan, Z.; Wu, C.; Zhang, J.; Liu, B.; Wang, Z. Mater. Sci. Eng. C 2018, 92, 374. [65] Wu, X.; Zhu, X.; Chong, P.; Liu, J.; Andre, L. N.; Ong, K. S.; Brinson, K., Jr.; Mahdi, A. I.; Li, J.; Fenno, L. E.; Wang, H.; Hong, G. PNAS 2019, 116, 26332. [66] Yoshida, A.; Liu, L.; Tu, D.; Kainuma, S.; Xu, C.-N. J. Disaster Res. 2017, 12, 506. [67] Terasaki, N. Sens. Mater. 2016, 28, 827. [68] Xu, H.; Wang, F.; Wang, Z.; Zhou, H.; Zhang, G.; Zhang, J.; Wang, J.; Yang, S. Tribol. Lett. 2019, 67, 13. [69] Terasaki, N.; Xu, C.-N. IEEE Sens. J. 2013, 13, 3999. [70] Shin, S. W.; Oh, J. P.; Hong, C. W.; Kim, E. M.; Woo, J. J.; Heo, G. S.; Kim, J. H. ACS Appl. Mater. Interfaces 2016, 8, 1098. [71] Jeong, S. M.; Song, S.; Kim, H.; Joo, K.-I.; Takezoe, H. Adv. Funct. Mater. 2016, 26, 4848. [72] Jeong, S. M.; Song, S.; Kim, H. Nano Energy 2016, 21, 154. [73] Jeong, S. M.; Song, S.; Joo, K.-I.; Kim, J.; Hwang, S.-H.; Jeong, J.; Kim, H. Energy Environ. Sci. 2014, 7, 3338. [74] Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. Adv. Mater. 2015, 27, 4488. [75] Terasaki, N.; Xu, C.-N.; Imai, Y.; Yamada, H. Jpn. J. Appl. Phys. 2007, 46, 2385. [76] Patel, D. K.; Cohen, B.-E.; Etgar, L.; Magdassi, S. Mater. Horiz. 2018, 5, 708. [77] Lynch, J. P.; Pulliam, E.; Hoover, G.; Tiparti, D.; Ryu, D. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 2017 (DOI:10.1117/12.2260318). [78] Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G.; Choi, K. C. Adv. Mater. 2020, 32, 1903488. [79] Shrivastava, S.; Trung, T. Q.; Lee, N. E. Chem. Soc. Rev. 2020, 49, 1812. [80] Jeong, S. M.; Song, S.; Seo, H.-J.; Choi, W. M.; Hwang, S.-H.; Lee, S. G.; Lim, S. K. Adv. Sustainable Syst. 2017, 1, 1700126. [81] Qian, X.; Cai, Z.; Su, M.; Li, F.; Fang, W.; Li, Y.; Zhou, X.; Li, Q.; Feng, X.; Li, W.; Hu, X.; Wang, X.; Pan, C.; Song, Y. Adv. Mater. 2018, 30, 1800291. [82] Park, H. J.; Kim, S.; Lee, J. H.; Kim, H. T.; Seung, W.; Son, Y.; Kim, T. Y.; Khan, U.; Park, N. M.; Kim, S. W. ACS Appl. Mater. Interfaces 2019, 11, 5200. [83] Zhang, J.; Bao, L.; Lou, H.; Deng, J.; Chen, A.; Hu, Y.; Zhang, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2017, 5, 8027. [84] Liang, G.; Ruan, Z.; Liu, Z.; Li, H.; Wang, Z.; Tang, Z.; Mo, F.; Yang, Q.; Ma, L.; Wang, D.; Zhi, C. Adv. Electron. Mater. 2019, 5. 1900553. [85] Monette, Z.; Kasar, A. K.; Menezes, P. L. J. Mater. Sci.-Mater. Electron. 2019, 30, 19675. [86] Wang, X.; Que, M.; Chen, M.; Han, X.; Li, X.; Pan, C.; Wang, Z. L. Adv. Mater. 2017, 29, 1605817. [87] Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C.; Wang, Z. L. Adv. Mater. 2015, 27, 2324. [88] Jang, J.; Kim, H.; Ji, S.; Kim, H. J.; Kang, M. S.; Kim, T. S.; Won, J. E.; Lee, J. H.; Cheon, J.; Kang, K.; Im, W. B.; Park, J. U. Nano Lett. 2020, 20, 66. [89] Arppe, R.; Sørensen, T. J. Nat. Rev. Chem. 2017, 1, 0031. [90] Zhang, J. C.; Pan, C.; Zhu, Y. F.; Zhao, L. Z.; He, H. W.; Liu, X.; Qiu, J. Adv. Mater. 2018, 30, 1804644. [91] Zuo, Y.; Xu, X.; Tao, X.; Shi, X.; Zhou, X.; Gao, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2019, 7, 4020. [92] Kenry; Duan, Y.; Liu, B. Adv. Mater. 2018, 30, 1802394. [93] Xiong, P.; Peng, M. J. Mater. Chem. C 2019, 7, 6301. [94] Li, L.; Wondraczek, L.; Li, L.; Zhang, Y.; Zhu, Y.; Peng, M.; Mao, C. ACS Appl. Mater. Interfaces 2018, 10, 14509. [95] Gong, Y.; He, S.; Li, Y.; Li, Z.; Liao, Q.; Gu, Y.; Wang, J.; Zou, B.; Li, Q.; Li, Z. Adv. Opt. Mater. 2020, 8, 1902036. [96] Li, J. A.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 6449. [97] Mukherjee, S.; Thilagar, P. Angew. Chem., Int. Ed. 2019, 58, 7922. [98] Ubba, E.; Tao, Y.; Yang, Z.; Zhao, J.; Wang, L.; Chi, Z. Chem.-Asian. J. 2018, 13, 3106. [99] Li, Q.; Li, Z. Adv. Sci. 2017, 4, 1600484. [100] Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220. [101] Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 15299. [102] Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874. [103] Liu, F.; Bi, S.; Wang, X.; Leng, X.; Han, M.; Xue, B.; Li, Q.; Zhou, H.; Li, Z. Sci. China:Chem. 2019, 62, 739. [104] Yang, J.; Chi, Z.; Zhu, W.; Tang, B.; Li, Z. Sci. China:Chem. 2019, 62, 1090. [105] Liao, Q.; Gao, Q.; Wang, J.; Gong, Y.; Peng, Q.; Tian, Y.; Fan, Y.; Guo, H.; Ding, D.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2020, 59, 9946. [106] Song, Y.; Xu, L.; Wu, Q.; Xiao, S.; Zeng, H.; Gong, Y.; Li, C.; Cheng, S.; Li, Q.; Zhang, L.; Li, Z. Small Methods 2020, 4, 1900779. [107] Zong, L.; Zhang, H.; Li, Y.; Gong, Y.; Li, D.; Wang, J.; Wang, Z.; Xie, Y.; Han, M.; Peng, Q.; Li, X.; Dong, J.; Qian, J.; Li, Q.; Li, Z. ACS Nano 2018, 12, 9532. [108] Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese). (杨杰, 李振, 有机化学, 2019, 39, 3304.) [109] Zhou, Z.; Song, J.; Nie, L.; Chen, X. Chem. Soc. Rev. 2016, 45, 6597. [110] Fang, M.; Yang, J.; Li. Z. Chin. J. Polym. Sci. 2019, 37, 383. [111] Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li. Z. Nat. Commun. 2018, 9, 840. |
[1] | 佘春艳, 王安静, 刘珊, 舒文明, 余维初. 芳乙酰叠氮的制备及其在有机合成中的应用进展[J]. 有机化学, 2024, 44(2): 481-507. |
[2] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[3] | 周姝彤, 涂胜男, 高子健, 王叶梅, 孙莎莎. 亚酞菁的合成、性质与应用研究进展[J]. 有机化学, 2023, 43(8): 2628-2646. |
[4] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[5] | 杨亮茹, 郭梦丽, 袁金伟, 王佳美, 夏宇婷, 肖咏梅, 毛璞. 钳形氮杂环卡宾金属络合物的研究进展[J]. 有机化学, 2023, 43(6): 2002-2025. |
[6] | 时广辉, 杜云哲, 高媛媛, 贾慧劼, 洪海龙, 韩利民, 竺宁. 硫化物还原硝基在胺类合成中的应用[J]. 有机化学, 2023, 43(2): 491-502. |
[7] | 刘悦灵, 钟欣欣, 张干兵. Pd(0)催化1-R-3-苯基亚丙基环丙烷(R=Me/H)与呋喃甲醛[3+2]环加成反应机理的密度泛函理论研究[J]. 有机化学, 2023, 43(2): 660-667. |
[8] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[9] | 李泽辉, 邹昊宇, 李林才, 赵怡玲, 朱红平. N,O-配体钴化合物的合成及其环氧丙烷羰化酯化的催化性能[J]. 有机化学, 2023, 43(11): 3907-3915. |
[10] | 李阳阳, 孙小飞, 胡晓玲, 任源远, 钟克利, 燕小梅, 汤立军. 三苯胺衍生物的合成及其基于聚集诱导发光(AIE)机理对汞离子“OFF-ON”荧光识别[J]. 有机化学, 2023, 43(1): 320-325. |
[11] | 凌琳, 王健, 李婧, 李玉学, 吕龙. 3-硝基-1,2,4-三唑-5-酮(NTO)热分解机理的对称破缺密度泛函理论研究[J]. 有机化学, 2023, 43(1): 285-294. |
[12] | 黄泽鑫, 尹宇强, 贾丰成, 吴安心. 吲哚及其衍生物C2—C3键断裂的反应研究进展[J]. 有机化学, 2022, 42(7): 2028-2044. |
[13] | 陈思鸿, 许佳敏, 李月媚, 彭宝茹, 罗凌玉, 冯慧烨, 陈兆华, 汪朝阳. 基于有机小分子的聚集诱导猝灭(ACQ)-聚集诱导发射(AIE)转换研究进展[J]. 有机化学, 2022, 42(6): 1651-1666. |
[14] | 鞠立鑫, 邵琦, 陆临川, 陆鸿飞. 基于嘌呤席夫碱荧光探针检测Al3+及细胞实验应用[J]. 有机化学, 2022, 42(6): 1706-1712. |
[15] | 石宇冰, 白文己, 母伟花, 李江平, 于嘉玮, 连冰. 钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展[J]. 有机化学, 2022, 42(5): 1346-1374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||