有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2715-2722.DOI: 10.6023/cjoc202101031 上一篇 下一篇
研究论文
收稿日期:
2021-01-18
修回日期:
2021-04-08
发布日期:
2021-04-25
通讯作者:
李友宾, 王雪松
作者简介:
基金资助:
Wei Wang, Xue Cui, Jianting Ma, Youbin Li(), Xuesong Wang()
Received:
2021-01-18
Revised:
2021-04-08
Published:
2021-04-25
Contact:
Youbin Li, Xuesong Wang
Supported by:
文章分享
报道了通过C—C键断裂开环构建环庚酮化合物的有效策略. 反应在碳酸铯存在下进行, 无需使用任何金属和氧化剂, 具有原料易得、底物适用性良好、反应条件温和的优点. 这种无金属催化炔插入C—Cσ-键, 通过分子内亲核加成/开环反应构建环庚酮化合物的方法, 在有机合成化学中有着广泛的应用前景。
王微, 崔雪, 马健婷, 李友宾, 王雪松. 基于C—C键断裂碱促进扩环构建环庚酮化合物[J]. 有机化学, 2021, 41(7): 2715-2722.
Wei Wang, Xue Cui, Jianting Ma, Youbin Li, Xuesong Wang. Base-Promoted Ring Expansion Reactions for the Construction of Cycloheptanones through C—C Bond Cleavage[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2715-2722.
Entry | Base | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|
1 | K2CO3 | DMSO | 12 | 28 |
2 | Cs2CO3 | DMSO | 2 | 78 |
3 | NaOH | DMSO | 2 | 51 |
4 | KOH | DMSO | 2 | 58 |
5 | NaH | DMSO | 2 | 45 |
6 | NaOtBu | DMSO | 2 | 68 |
7 | KOtBu | DMSO | 2 | 62 |
8 | Cs2CO3 | DMF | 2 | 82 |
9 | Cs2CO3 | DMAC | 2 | 82 |
10 | Cs2CO3 | CH3CN | 12 | Trace |
11 | Cs2CO3 | THF | 12 | Trace |
12 | Cs2CO3 | H2O | 12 | Trace |
13 | Cs2CO3 | Toluene | 12 | Trace |
14 | Cs2CO3 | EtOH | 12 | Trace |
15 | Cs2CO3 | 1,4-Dioxane | 12 | Trace |
16 | Cs2CO3 | CH2Cl2 | 12 | Trace |
17c | Cs2CO3 | DMF | 2 | 72 |
18d | Cs2CO3 | DMF | 2 | 78 |
19e | Cs2CO3 | DMF | 2 | 83 |
Entry | Base | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|
1 | K2CO3 | DMSO | 12 | 28 |
2 | Cs2CO3 | DMSO | 2 | 78 |
3 | NaOH | DMSO | 2 | 51 |
4 | KOH | DMSO | 2 | 58 |
5 | NaH | DMSO | 2 | 45 |
6 | NaOtBu | DMSO | 2 | 68 |
7 | KOtBu | DMSO | 2 | 62 |
8 | Cs2CO3 | DMF | 2 | 82 |
9 | Cs2CO3 | DMAC | 2 | 82 |
10 | Cs2CO3 | CH3CN | 12 | Trace |
11 | Cs2CO3 | THF | 12 | Trace |
12 | Cs2CO3 | H2O | 12 | Trace |
13 | Cs2CO3 | Toluene | 12 | Trace |
14 | Cs2CO3 | EtOH | 12 | Trace |
15 | Cs2CO3 | 1,4-Dioxane | 12 | Trace |
16 | Cs2CO3 | CH2Cl2 | 12 | Trace |
17c | Cs2CO3 | DMF | 2 | 72 |
18d | Cs2CO3 | DMF | 2 | 78 |
19e | Cs2CO3 | DMF | 2 | 83 |
[1] |
For selected reviews on C—C bond cleavage, see: (a) Chen,P. -H.; Billett,B. A.; Tsukamoto, T.; Dong,, G. ACS Catal. 2017, 7,1340.
doi: 10.1021/acscatal.6b03210 |
(b) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47,1137.
doi: 10.1021/ar400259e |
|
(c) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47,1100.
doi: 10.1039/C0CC02566F |
|
(d) Jun,C. H. Chem. Soc. Rev. 2004, 33,610.
doi: 10.1039/B308864M |
|
[2] |
For selected reviews, see: (a) Souillart, L.; Cramer,, N. Chem. Rev. 2015, 115,9410.
doi: 10.1021/acs.chemrev.5b00138 |
(b) Dermenci, A.; Coe,J. W.; Dong, G. Org. Chem. Front. 2014, 1,567.
doi: 10.1039/C4QO00053F |
|
(c) Mack,D. J.; Njardarson,J. T. ACS Catal. 2013, 3,272.
doi: 10.1021/cs300771d |
|
(d) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370,540.
doi: 10.1038/370540a0 |
|
[3] |
For selected examples, see: (e) Zhang, H.; Wu,, G.; Yi,, H.; Sun,, T.; Wang,, B.; Zhang,, y.; Dong,, G.; Wang,, J. Angew. Chem. Int. Ed. 2017, 56,3945.
doi: 10.1002/anie.201612138 |
(f) Banik,S. M.; Mennie,,K. M..; Jacobsen,,E. N. J. Am. Chem. Soc. 2017, 139,9152.
doi: 10.1021/jacs.7b05160 |
|
(g) Zhao, B.; Shi,, Z. Angew. Chem. Int. Ed. 2017, 56,12727.
doi: 10.1002/anie.v56.41 |
|
[4] |
(a) Yamamoto,S. -I.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.; Takai, K. Org. Lett. 2012, 14,3182.
doi: 10.1021/ol301273j |
(b) Kuninobu, Y.; Matsuzaki, H.; Nishi, M.; Takai, K. Org. Lett. 2011, 13,2959.
doi: 10.1021/ol2008507 |
|
(c) Kuninobu, Y.; Takata, H.; Kawata, A.; Takai, K. Org. Lett. 2008, 10,3133.
doi: 10.1021/ol801226t |
|
(d) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128,11368.
doi: 10.1021/ja064022i |
|
(e) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132,10070.
doi: 10.1021/ja102346v |
|
(f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131,6624.
doi: 10.1021/ja9010282 |
|
(g) Nishihara, Y.; Inoue, Y.; Itazaki, M.; Takagi, K. Org. Lett. 2005, 7,2639.
doi: 10.1021/ol050749k |
|
(h) Miura, T.; Shimada, M.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44,7598.
doi: 10.1002/(ISSN)1521-3773 |
|
(i) Zhao, J.; Liu, J.; Xie, X.; Li, S.; Liu, Y. Org. Lett. 2015, 17,5926.
doi: 10.1021/acs.orglett.5b03160 |
|
[5] |
(a) Yu,X. -Y.; Chen,J. -R.; Xiao,W. -J. Chem. Rev. 2021, 121,506.
doi: 10.1021/acs.chemrev.0c00030 |
(b) Pirenne, V.; Muriel, B.; Waser, J. Chem. Rev. 2021, 121,227.
doi: 10.1021/acs.chemrev.0c00109 |
|
(c) Vicente, R. Chem. Rev. 2021, 121,162.
doi: 10.1021/acs.chemrev.0c00151 |
|
(d) Lu, H.; Yu,T. -Y.; Xu,P. -F.; Wei, H. Chem. Rev. 2021, 121,365.
doi: 10.1021/acs.chemrev.0c00153 |
|
(e) Nogi, K.; Yorimitsu, H. Chem. Rev. 2021, 121,345.
doi: 10.1021/acs.chemrev.0c00157 |
|
(f) Cohen, Y.; Cohen, A.; Marek, I. Chem. Rev. 2021, 121,140.
doi: 10.1021/acs.chemrev.0c00167 |
|
(g) Murakami, M.; Ishida, N. Chem. Rev. 2021, 121,264.
doi: 10.1021/acs.chemrev.0c00569 |
|
(h) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115,9410.
doi: 10.1021/acs.chemrev.5b00138 |
|
(i) Lutz,M. D.R.; Morandi, B. Chem. Rev. 2021, 121,300.
doi: 10.1021/acs.chemrev.0c00154 |
|
(j) Wang, J.; Li, F.; Yu, X.; Liu, L.; Ding, J.; Xie, P.; Wang, J. Chin. J. Org. Chem. 2018, 38,1638 (in Chinese).
doi: 10.6023/cjoc201802007 |
|
( 王晶晶, 李峰, 于晓波, 刘澜涛, 丁俊汝, 谢佩瑶, 王建辉, 有机化学, 2018, 38,1638.)
|
|
(k) Kou, X.; Fan, J.; Tong, X.; Shen, Z. Chin. J. Org. Chem. 2013, 33,1407 (in Chinese).
doi: 10.6023/cjoc201212033 |
|
( 寇学振, 范佳骏, 童晓峰, 沈增明, 有机化学, 2013, 33,1407.)
|
|
(l) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40,1423 (in Chinese).
doi: 10.6023/cjoc202002035 |
|
( 代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40,1423.)
|
|
[6] |
(a) Tambar,U. K.; Stoltz,B. M. J. Am. Chem. Soc. 2005, 127,5340.
doi: 10.1021/ja050859m |
(b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002, 41,3247.
doi: 10.1002/1521-3773(20020902)41:17【-逻*辑*与-】#x00026;lt;【-逻*辑*与-】#x00026;gt;1.0.CO;2-C |
|
(c) Yoshida, H.; Watanabe, M.; Ohshita, J.; Kunai, A. Chem. Commun. 2005,3292.
|
|
(d) Yoshida, H.; Watanabe, M.; Morishita, T.; Ohshita, J.; Kunai, A. Chem. Commun. 2007,1505.
|
|
(e) Yoshida, H.; Kishida, T.; Watanabe, M.; Ohshita, J. Chem. Commun. 2008,5963.
|
|
(f) Li, R.; Tang, H.; Fu, H.; Ren, H.; Wang, X.; Wu, C.; Wu, C.; Shi, F. J. Org. Chem. 2014, 79,1344.
doi: 10.1021/jo402754d |
|
(g) Okuma, K.; Itoyama, R.; Sou, A.; Nagahora, N.; Shioj, K. Chem. Commun. 2012, 48,11145.
doi: 10.1039/c2cc36128k |
|
(h) Ziadi, A.; Martin, R. Org. Lett. 2012, 14,1266.
doi: 10.1021/ol300119u |
|
(i) Masarwa, A.; Weber, M.; Sarpong, R. J. Am. Chem. Soc. 2015, 137,6327.
doi: 10.1021/jacs.5b02254 |
|
(j) Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2014, 136,3013.
doi: 10.1021/ja500118w |
|
(k) Souillart, L.; Cramer, N. Chem. Sci. 2014, 5,837.
doi: 10.1039/C3SC52753K |
|
(l) JuliaHernandez, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem. Int. Ed. 2015, 54,9537.
doi: 10.1002/anie.v54.33 |
|
(m) Wright,A. C.; Haley,C. K.; Lapointe, G.; Stoltz,B. M. Org. Lett. 2016, 18,2793.
doi: 10.1021/acs.orglett.6b00994 |
|
(n) Samineni, R.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18,2832.
doi: 10.1021/acs.orglett.6b01078 |
|
[7] |
Gampe,C. M.; Boulos, S.; Carreira,E. M. Angew. Chem. Int. Ed. 2010, 49,4092.
doi: 10.1002/anie.201001137 |
[8] |
Yao, Q.; Kong, L.; Wang, M.; Yuan, Y.; Sun, R.; Li, Y. Org. Lett. 2018, 20,1744.
doi: 10.1021/acs.orglett.8b00206 |
[9] |
Wang, M.; Yang, Y.; Song, B.; Yin, L.; Yan, S.; Li, Y. Org. Lett. 2020, 22,155.
doi: 10.1021/acs.orglett.9b04081 |
[10] |
Yao, Q.; Kong, L.; Zhang, F.; Tao, X.; Li, Y. Adv. Synth. Catal. 2017, 359,3079.
doi: 10.1002/adsc.201700565 |
[11] |
Zhang, F.; Yao, Q.; Yuan, Y.; Xu, M.; Kong, L.; Li, Y. Org. Biomol. Chem. 2017, 15,2497.
doi: 10.1039/C7OB00476A |
[12] |
(a) Cheng, X.; Zhou, Y.; Zhang, F.; Zhu, K.; Liu, Y.; Li, Y. Chem.-Eur. J. 2016, 22,12655.
|
(b) Zhou, Y.; Tao, X.; Yao, Q.; Zhao, Y.; Li, Y. Chem.-Eur. J. 2016, 22,17936.
|
|
[13] |
(a) Gill, M.; Steglich, W. Prog. Chem. Org. Nat. Prod. 1987, 51,1.
|
(b) Hafeman,N. J.; Loskot,S. A.; Reimann,C. E.; Pritchett,B. P.; Virgil,S. C.; Stoltz,B. M. J. Am. Chem. Soc. 2020, 142,8585.
doi: 10.1021/jacs.0c02513 |
|
(c) Zhang,P. P.; Yan,Z. M.; Li,Y. H.; Gong,J. X.; Yang, Z. J. Am. Chem. Soc. 2017, 139,13989.
doi: 10.1021/jacs.7b07388 |
[1] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
[2] | 郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074. |
[3] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[4] | 余璐璐, 丁群山, 宋传君, 常俊标. (–)-Angustureine的对映选择性合成[J]. 有机化学, 2021, 41(6): 2507-2510. |
[5] | 张馨元, 林礼, 李静, 段世妤, 隆宇航, 李加洪. 中环大环化合物合成研究进展[J]. 有机化学, 2021, 41(5): 1878-1887. |
[6] | 王宇, 王泾洋, 吴啸宇, 丁广妮, 张兆国, 谢小敏. 脱烯丙基反应研究进展[J]. 有机化学, 2021, 41(4): 1337-1358. |
[7] | 袁文豪, 许家喜. 氧杂环丁烷的扩环反应[J]. 有机化学, 2021, 41(3): 947-958. |
[8] | 刘文竹, 豆立娟, 母伟花. 环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2020, 40(5): 1150-1176. |
[9] | 潘世豪, 缪谦. 利用扩环反应策略向稠环芳烃引入八元环[J]. 有机化学, 2020, 40(10): 3347-3353. |
[10] | 胡辉, 胡晓苹, 陈铭, 孙宁, 刘元红. 金催化的扩环反应:2,3-苯并二氮杂(艹卓)类化合物的高效合成[J]. 有机化学, 2018, 38(1): 190-199. |
[11] | 卓庆德, 王铜道, 周小茜, 张弘. 过渡金属杂小环的扩环反应研究进展[J]. 有机化学, 2014, 34(8): 1471-1486. |
[12] | 刘武, 肖粉粉, 胡向东. Lucidone和Methyl Lucidone的简洁合成[J]. 有机化学, 2013, 33(07): 1587-1590. |
[13] | 杨亮茹, 魏栋, 买文鹏, 毛璞. 扩环氮杂环卡宾前体鎓盐的合成进展[J]. 有机化学, 2013, 33(05): 943-953. |
[14] | 刘俊辉; 张文雄; 席振峰*. 硅杂四元环化合物的合成和反应[J]. 有机化学, 2009, 29(04): 491-503. |
[15] | 侯传金,梁晓梅,吴景平,田美玲,王道全. 一种新的合成12-氧代-1,15-十五内酰胺的方法[J]. 有机化学, 2006, 26(11): 1597-1599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||