有机化学 ›› 2023, Vol. 43 ›› Issue (2): 455-470.DOI: 10.6023/cjoc202208008 上一篇 下一篇
综述与进展
马彪a, 章淼淼a, 李占宇a,b,*(), 彭进松a, 陈春霞a,*()
收稿日期:
2022-08-06
修回日期:
2022-09-25
发布日期:
2022-10-31
基金资助:
Biao Maa, Miaomiao Zhanga, Zhanyu Lia,b(), Jinsong Penga, Chunxia Chena()
Received:
2022-08-06
Revised:
2022-09-25
Published:
2022-10-31
Contact:
*E-mail: Supported by:
文章分享
过渡金属催化的Suzuki交叉偶联反应是构建碳碳键最高效和最广泛的方法之一, 其广泛的研究极大地推动了合成化学的发展. 当前Suzuki交叉偶联反应主要依赖于贵金属钯催化体系, 然而, 金属钯储量低、价格昂贵及高毒性等弊端已经严重地限制了其在现代合成中的发展. 在过去二十年时间, 无金属催化的Suzuki-Type交叉偶联反应受到了广泛的关注, 许多新型高效的反应体系被开发报道. 总结了近二十年无金属催化的Suzuki-Type交叉偶联反应的研究进展, 主要涉及的反应类型包括碱、金属有机试剂和有机小分子促进的反应, 并对相关的反应机理进行了阐述.
马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470.
Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470.
[1] |
(a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
doi: 10.1021/cr00039a007 |
(b) Patel, K. N.; Bedekar. A. V. Catal. Lett. 2015, 145, 1710
doi: 10.1007/s10562-015-1570-z |
|
(c) Zhang, L.; Yang, C.; Guo, X.-F.; Mo, F.-Y. Chin. J. Org. Chem. 2021, 41, 3492. (in Chinese)
doi: 10.6023/cjoc202103040 |
|
(张雷, 杨晨, 郭雪峰, 莫凡洋, 有机化学, 2021, 41, 3492.)
doi: 10.6023/cjoc202103040 |
|
[2] |
Schneider, N.; Lowe, D. M.; Sayle, R, A.; Tarselli, M.; Landrum, G. J. Med. Chem. 2016, 59, 4385.
doi: 10.1021/acs.jmedchem.6b00153 pmid: 27028220 |
[3] |
Li, Y.; Duan, G. T.; Liu, G. Q.; Cai, W. P. Chem. Soc. Rev. 2013, 42, 3614.
doi: 10.1039/c3cs35482b |
[4] |
Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am. Chem. Soc. 2006, 128, 6829.
doi: 10.1021/ja0569959 |
[5] |
(a) Narayan, S.; Muldoon, J.; Finn, M.; Fokin, V.; Kolb, H.; Sharpless, K. J. Angew. Chem. Int. Ed. 2005, 44, 21.
doi: 10.1002/ange.19310440105 |
(b) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937
doi: 10.1039/c1cs15129k |
|
(c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
doi: 10.1038/nature13274 |
|
[6] |
Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
doi: 10.1021/cr100327p |
[7] |
Felpin, F. X.; Ayad, T.; Mitra, S. Eur. J. Org. Chem. 2006, 2679.
|
[8] |
(a) Bedford, R. B.; Brenner, P. B.; Carter, E.; Carvell, T. W; Cogswell, P. M.; Gallagher, T.; Harvey, J. N.; Murphy, D. M.; Neeve, E. C.; Nunn, J.; Pye, D. M. Chem.-Eur. J. 2014, 20, 7935.
doi: 10.1002/chem.201402174 pmid: 22148416 |
(b) Hashimoto, T.; Hatakeyama, T.; Nakamura, M. J. Org. Chem. 2012, 77, 1168
doi: 10.1021/jo202151f pmid: 22148416 |
|
(c) Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Angew. Chem. 2012, 124, 8964.
doi: 10.1002/ange.201202797 pmid: 22148416 |
|
[9] |
Neely, J. A.; Bezdek, M. J.; Chirik, P. J. ACS Cent. Sci. 2016, 2, 12.
doi: 10.1021/acscentsci.6b00002 |
[10] |
(a) Shields, J. D.; Gray, E. E.; Doyle, A. G. Org. Lett. 2015, 17, 2166.
doi: 10.1021/acs.orglett.5b00766 pmid: 25886092 |
(b) Mastalir, M.; Stöger, B.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Org. Lett. 2016, 18, 3186
doi: 10.1021/acs.orglett.6b01398 pmid: 25886092 |
|
(c) Shi, S.; Meng, G.; Szostak, M. Angew. Chem., Int. Ed. 2016, 55, 6959.
doi: 10.1002/anie.201601914 pmid: 25886092 |
|
(d) Shi, S.; Meng, G.; Szostak, M. Angew. Chem., Int. Ed. 2016, 55, 6959.
doi: 10.1002/anie.201601914 pmid: 25886092 |
|
(e) Chen, G.-J.; Du, J.-S. Chin. J. Org. Chem. 2014, 34, 65. (in Chinese)
doi: 10.6023/cjoc201307035 pmid: 25886092 |
|
(陈国军, 杜建时, 有机化学, 2014, 34, 65.)
doi: 10.6023/cjoc201307035 pmid: 25886092 |
|
(f) Li, Y.-Q.; Fan, Y.-H.; Jia, Q.-F. Chin. J. Org. Chem. 2019, 39, 350. (in Chinese)
doi: 10.6023/cjoc201806038 pmid: 25886092 |
|
(李娅琼, 范玉航, 贾乾发, 有机化学, 2019, 39, 350.)
doi: 10.6023/cjoc201806038 pmid: 25886092 |
|
[11] |
(a) Basnet, P.; Thapa, S.; Dickie, D. A.; Giri, R. Chem. commun. 2016, 52, 11072.
doi: 10.1039/C6CC05114F |
(b) Sun, Y.; Yi, J.; Lu, X.; Zhang, Z.; Xiao, B.; Fu, Y. Chem. Commun. 2014, 50, 11060
doi: 10.1039/C4CC05376A |
|
(c) Zhou, Y. Q.; You, W.; Smith, K. B.; Brown, K. M. Angew. Chem. 2014, 126, 3543.
doi: 10.1002/ange.201310275 |
|
[12] |
Leadbeater, N. E.; Marco, M. Angew. Chem. 2003, 115, 11512.
|
[13] |
Arvela, R. K.; Leadbeater, N. E.; Sangi, M. S.; Williams, V. A.; Granados, P.; Singer, R. D. J. Org. Chem. 2005, 70, 161.
pmid: 15624918 |
[14] |
Scrivanti, A.; Beghetto, V.; Bertoldini, M.; Matteoli U. Eur. J. Org. Chem. 2012, 264.
|
[15] |
Tian, D. S.; Li, C. X.; Gu, G. X.; Peng, H.; Zhang, X.; Tang, W. J. Angew. Chem., Int. Ed. 2018, 57, 7176.
doi: 10.1002/anie.201712829 |
[16] |
Urbani, P.; Cascio, M. G.; Ramunno, A.; Bisogno, T.; Saturninno, C.; Marzo, V. D. Bioorg. Med. Chem. 2008, 16, 7510.
doi: 10.1016/j.bmc.2008.06.001 |
[17] |
Ueda, M.; Nishimura, K.; Kashima, R.; Ryu, I. Synlett 2012, 23, 1089.
|
[18] |
(a) Huang, X. T.; Chen, Q. Y. J. Org. Chem. 2001, 66, 4651.
pmid: 11421787 |
(b) Loy, R. N.; Sanford, M. S. Org. Lett. 2011, 13, 2548.
doi: 10.1021/ol200628n pmid: 11421787 |
|
[19] |
Ueda, M.; Nishimura, K.; Ryu, I. Synlett 2013, 24, 1683.
doi: 10.1055/s-0033-1339199 |
[20] |
(a) Yoshida, M.; Gotou, T.; Ihara, M. Tetrahedron Lett. 2004, 45, 5573.
doi: 10.1016/j.tetlet.2004.05.147 pmid: 16468806 |
(b) Moriya, T.; Miyaura, N.; Suzuki, A. Synlett 1994, 149.
pmid: 16468806 |
|
(c) Yoshida, M.; Ueda, H.; Ihara, M. Tetrahedron Lett. 2005, 46, 6705.
pmid: 16468806 |
|
(d) Molander, G. A.; Sommers, E. M.; Neufeldt, S. R. J. Org. Chem. 2006, 71, 1563.
doi: 10.1021/jo052201x pmid: 16468806 |
|
[21] |
Ueda, M.; Nakakoji, D.; Kuwahara, Y.; Nishimura, K.; Ryu, I. Tetrahedron Lett. 2016, 57, 4142.
doi: 10.1016/j.tetlet.2016.07.089 |
[22] |
Li, C. X; Zhang, Y. Y.; Sun, Q.; Gu, T.; Peng, H.; Tang, W. J. J. Am. Chem. Soc. 2016, 138, 10774.
doi: 10.1021/jacs.6b06285 |
[23] |
Liu, S. W.; Zeng, X. J.; Hammond, G. B.; Xu, B. Adv. Synth. Catal. 2018, 360, 3667.
doi: 10.1002/adsc.201800826 |
[24] |
Wu, G. J.; Xu, S.; Deng, Y. F.; Wu, C. Q.; Zhao, X.; Ji, W. Z.; Zhang, Y.; Wang, J. B. Tetrahedron 2016, 72, 8022.
doi: 10.1016/j.tet.2016.10.031 |
[25] |
(a) Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271.
doi: 10.1016/S0040-4039(02)02501-7 pmid: 19548645 |
(b) Baughman, B. M.; Stennett, E.; Lipner, R. F.; Rudawsky, A. C.; Schmidtke, S. J. Phys. Chem. A 2009, 113, 8011.
doi: 10.1021/jp810256x pmid: 19548645 |
|
[26] |
(a) Furstner, A.; Voigtlander, D.; Schrader, W.; Giebel, D.; Reetz, M. T. Org. Lett. 2001, 3, 417.
doi: 10.1021/ol0069251 |
(b) Song, C. E.; Shim, W. H.; Roh, E. J.; Choi, J. H. Chem. Commun. 2000, 1695.
|
|
[27] |
Jadhav, S.; Rashinkar, G.; Salunkhe, R.; Kumbhar, A. Tetrahedron Lett. 2017, 58, 3201.
doi: 10.1016/j.tetlet.2017.06.048 |
[28] |
Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 10581.
doi: 10.1021/ja505455z pmid: 25019925 |
[29] |
Takeda, M.; Nagao, K.; Ohmiya, H. Angew. Chem., Int. Ed. 2020, 59, 22460.
doi: 10.1002/anie.202010251 |
[30] |
Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.
doi: 10.1038/nchem.1971 |
[31] |
Okura, K.; Teranishi, T.; Yoshida, Y.; Shirakawa, E. Angew. Chem., Int. Ed. 2018, 57, 7186.
doi: 10.1002/anie.201802813 |
[32] |
Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502.
doi: 10.1002/anie.202002246 |
[33] |
He, Z. Q.; Song, F. F.; Sun, H.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693.
doi: 10.1021/jacs.8b00380 |
[34] |
Xu, J. W.; He, Z. Q.; Zhang, J. W.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2022, 61, e202211408.
|
[35] |
Choghamarani, A.; Taherinia, Z. ChemistrySelect 2019, 4, 4735.
doi: 10.1002/slct.201900801 |
[36] |
Tian, W. F.; He, K. H.; Li, N.; Fen.; Liu.; Mai, X.; Feng, L. H.; He, Y. Q. ChemistrySelect 2020, 5, 4496.
doi: 10.1002/slct.202000416 |
[37] |
Liu, W. B; Li, J. B.; Querard, P.; Li, C. J. J. Am. Chem. Soc. 2019, 141, 6755.
doi: 10.1021/jacs.9b02684 |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[3] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[4] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[5] | 陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳. BF3•OEt2作为催化剂与合成子在有机合成中的应用进展[J]. 有机化学, 2023, 43(9): 3107-3118. |
[6] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[7] | 白林盛, 洪鹏, 应安国. 功能化聚丙烯腈纤维促进有机反应的研究进展[J]. 有机化学, 2023, 43(4): 1241-1270. |
[8] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[9] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[10] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[11] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[12] | 刘宁, 爨晓丹, 李慧, 段希焱. 烯胺酮α-官能团化反应的研究进展[J]. 有机化学, 2023, 43(2): 602-621. |
[13] | 秦思凝. 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023, 43(11): 3761-3783. |
[14] | 马伟源, 戴惠芳, 亢少林, 张天麟, 舒兴中. 芳基乙烯基硅烷与芳基卤代物的Hiyama偶联反应[J]. 有机化学, 2023, 43(10): 3614-3622. |
[15] | 陈泗林, 杨芸辉, 陈超, 王从洋. 过渡金属催化的酮羰基导向C—H键官能化反应进展[J]. 有机化学, 2023, 43(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||