有机化学 ›› 2021, Vol. 41 ›› Issue (8): 3073-3082.DOI: 10.6023/cjoc202104059 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
收稿日期:
2021-04-29
修回日期:
2021-05-11
发布日期:
2021-05-25
通讯作者:
徐允河
基金资助:
Received:
2021-04-29
Revised:
2021-05-11
Published:
2021-05-25
Contact:
Yunhe Xu
Supported by:
文章分享
报道了一种钯催化分子内Heck环化串联反应. 该反应使用3-取代保护的吲哚酰胺衍生物作为原料, 碘化钯作为催化剂, 4-(二甲氨基)三苯基膦作为配体, 在乙腈和甲苯混合溶剂中发生串联反应, 以优良的收率合成了氮杂桥环化合物. 该反应具有良好的官能团兼容性和较高的合成效率, 为“一锅法”构建稠环化合物提供了一种简便的方法.
李曼, 汪颖, 徐允河. 钯催化串联Heck环化反应制备氮杂桥环化合物[J]. 有机化学, 2021, 41(8): 3073-3082.
Man Li, Ying Wang, Yunhe Xu. Palladium-Catalyzed Tandem Heck Cyclization Reactions to Access the Bridged N-Heterocyclic Compounds[J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3073-3082.
Entry | Catalyst+Ligand | Additive (equiv.) | Base | Yield/% |
---|---|---|---|---|
1 | Pd(OAc)2+PPh3 | None | Na2CO3 | 10 |
2 | Pd(OAc)2+PPh3 | None | CsF | 33 |
3 | Pd(OAc)2+PPh3 | None | Cs2CO3 | 35 |
4 | Pd(OAc)2+PPh3 | H2O (7) | Cs2CO3 | 51 |
5 | Pd(OAc)2+L1 | H2O (7) | Cs2CO3 | 5 |
6 | Pd(OAc)2+L2 | H2O (7) | Cs2CO3 | 43 |
7 | Pd(OAc)2+L3 | H2O (7) | Cs2CO3 | 60 |
8 | PdBr2+L3 | H2O (7) | Cs2CO3 | 50 |
9 | PdCl2+L3 | H2O (7) | Cs2CO3 | 59 |
10 | Pd(TFA)2+L3 | H2O (7) | Cs2CO3 | 12 |
11 | PdI2+L3 | H2O (7) | Cs2CO3 | 75 (72c) |
12 | Pd2(dba)3+L3 | H2O (7) | Cs2CO3 | 54 |
13 | Pd(PPh3)4+L3 | H2O (7) | Cs2CO3 | 8 |
14d | PdI2+L3 | H2O (7) | Cs2CO3 | 16 |
15e | PdI2+L3 | H2O (7) | Cs2CO3 | 48 |
16 | L3 | H2O (7) | Cs2CO3 | 0 |
17 | PdI2 | H2O (7) | Cs2CO3 | 12 |
18 | PdI2+L3 | H2O (7) | None | 0 |
Entry | Catalyst+Ligand | Additive (equiv.) | Base | Yield/% |
---|---|---|---|---|
1 | Pd(OAc)2+PPh3 | None | Na2CO3 | 10 |
2 | Pd(OAc)2+PPh3 | None | CsF | 33 |
3 | Pd(OAc)2+PPh3 | None | Cs2CO3 | 35 |
4 | Pd(OAc)2+PPh3 | H2O (7) | Cs2CO3 | 51 |
5 | Pd(OAc)2+L1 | H2O (7) | Cs2CO3 | 5 |
6 | Pd(OAc)2+L2 | H2O (7) | Cs2CO3 | 43 |
7 | Pd(OAc)2+L3 | H2O (7) | Cs2CO3 | 60 |
8 | PdBr2+L3 | H2O (7) | Cs2CO3 | 50 |
9 | PdCl2+L3 | H2O (7) | Cs2CO3 | 59 |
10 | Pd(TFA)2+L3 | H2O (7) | Cs2CO3 | 12 |
11 | PdI2+L3 | H2O (7) | Cs2CO3 | 75 (72c) |
12 | Pd2(dba)3+L3 | H2O (7) | Cs2CO3 | 54 |
13 | Pd(PPh3)4+L3 | H2O (7) | Cs2CO3 | 8 |
14d | PdI2+L3 | H2O (7) | Cs2CO3 | 16 |
15e | PdI2+L3 | H2O (7) | Cs2CO3 | 48 |
16 | L3 | H2O (7) | Cs2CO3 | 0 |
17 | PdI2 | H2O (7) | Cs2CO3 | 12 |
18 | PdI2+L3 | H2O (7) | None | 0 |
[1] |
(a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
pmid: 28177632 |
(b) Pennington, L.-D.; Moustaskas, D.-T. J. Med. Chem. 2017, 60, 3552.
doi: 10.1021/acs.jmedchem.6b01807 pmid: 28177632 |
|
(c) Zeni, G.; Larock, R.-C. Chem. Rev. 2006, 106, 4644.
doi: 10.1021/cr0683966 pmid: 28177632 |
|
(d) Zheng, Y.; Xie, Z.-Z.; Chen, K.; Xiang, H.-Y.; Yang, H. Chin. J. Org. Chem. 2021, 41, 1. (in Chinese)
doi: 10.6023/cjoc202008037 pmid: 28177632 |
|
(郑雨, 谢珍珍, 陈凯, 向皞月, 阳华, 有机化学, 2021, 41, 1.)
doi: 10.6023/cjoc202008037 pmid: 28177632 |
|
[2] |
(a) Psarra, V.; Fousteris, M.-A.; Hennig, L.; Giannis, A.; Nikolaropoulos, S.-S. Tetrahedron 2016, 72, 2376.
doi: 10.1016/j.tet.2016.03.048 |
(b) De, Candia, M.; Zaetta,, G.; Denora,, N.; Cellamare,, S.; Altomare,, C.-D. Eur. J. Med. Chem. 2017, 125, 288.
doi: 10.1016/j.ejmech.2016.09.037 |
|
(c) Purgatorio, R.; De Candia, M.; Toma, M.; Ivanova, O.-A.; Voskressensky, L.-G.; Altomare, C.-D. Eur. J. Med. Chem. 2019, 77, 414.
|
|
[3] |
Ping, Y.-Y.; Li, Y.-X.; Zhu, J.-P.; Kong, W.-Q. Angew. Chem., Int. Ed. 2019, 58, 1562.
doi: 10.1002/anie.v58.6 |
[4] |
(a) Shilov, A.-E.; ShulQpin, G.-B. Chem. Rev. 1997, 97, 2879.
doi: 10.1021/cr9411886 |
(b) Bergman, R.-G. Nature 2007, 446, 391.
doi: 10.1038/446391a |
|
(c) Chen, X.; Engle, K.-M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
doi: 10.1002/anie.v48:28 |
|
[5] |
(a) Frignani, F.; Rangoni, F.; Catellani, M. Angew. Chem., Int. Ed. 1997, 36, 119.
|
(b) Della, Ca, N.; Fontana,, M.; Motti,, E.; Catellani,, M. Acc. Chem. Res. 2016, 49, 1389.
doi: 10.1021/acs.accounts.6b00165 |
|
(c) Ye, J.-T.; Lantens, M. Nat. Chem. 2015, 7, 863.
doi: 10.1038/nchem.2372 |
|
[6] |
Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron Lett. 1988, 29, 4329.
doi: 10.1016/S0040-4039(00)80489-X |
[7] |
(a) Shen, C.; Liu, R. R.; Fan, R. J.; Li, Y. L.; Xu, T. F.; Jia, Y.-X. J. Am. Chem. Soc. 2015, 137, 4936.
doi: 10.1021/jacs.5b01705 |
(b) Kong, W. Q.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2017, 56, 3987.
doi: 10.1002/anie.201700195 |
|
(c) Zhang, Z.-M.; Xu, B.; Qian, Y.-Y.; Wu, L.-Z.; Wu, Y.-Q.; Zhou, L.-J.; Zhang, J.-L. Angew. Chem., Int. Ed. 2018, 57, 10373.
doi: 10.1002/anie.v57.32 |
|
[8] |
(a) Newman, S.-G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.
doi: 10.1021/ja110377q pmid: 31070918 |
(b) Newman, S.-G.; Howell, J.-K.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916.
doi: 10.1021/ja206099t pmid: 31070918 |
|
(c) Petrone, D.-A.; Lischka, M.; Lautens, M. Angew. Chem., Int. Ed. 2013, 52, 10635.
doi: 10.1002/anie.201304923 pmid: 31070918 |
|
(d) Petrone, D. A.; Yoon, H.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 7908.
doi: 10.1002/anie.201404007 pmid: 31070918 |
|
(e) Zhang, Z.-M.; Xu, B.; Wu, L.-Z.; Ji, D.-T.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 8110.
doi: 10.1021/jacs.9b04332 pmid: 31070918 |
|
[9] |
(a) Pinto, A.; Jia, Y.-X.; Neuville, L.; Zhu, J.-P. Chem.-Eur. J. 2007, 13, 961.
doi: 10.1002/(ISSN)1521-3765 pmid: 26379033 |
(b) Yoon, H.; Petrone, D.-A.; Lautens, M. Org. Lett. 2014, 16, 6420.
doi: 10.1021/ol503243a pmid: 26379033 |
|
(c) Petrone, D.-A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838.
doi: 10.1021/acs.orglett.5b02403 pmid: 26379033 |
|
[10] |
(a) Vachhani, D.-D.; Butani, H.-H.; Sharma, N.; Bhoya, U.-C.; Shah, A.-K.; Van der Eycken, E.-V. Chem. Commun. 2015, 51, 14862.
doi: 10.1039/C5CC05193B |
(b) Yoon, H.; Jiang, Y.-J.; Lautens, M. Synthesis 2016, 48, 1483.
doi: 10.1055/s-00000084 |
|
(c) Jiang, Z.-W.; Hou, L.-L.; Ni, C.-J.; Wang, D.; Tong, X.-F. Chem. Commun. 2017, 53, 4270.
doi: 10.1039/C7CC01488K |
|
[11] |
Jaegli, S.; Erb, W.; Retailleau, P.; Vors, J.-P.; Neuville, L.; Zhu, J.-P. Chem.-Eur. J. 2010, 16, 5863.
doi: 10.1002/chem.201000312 |
[12] |
(a) Fretwell, P.; Meerholtz, C.; Sridharan, V.; Grigg, R. Tetrahedron 1994, 50, 359.
doi: 10.1016/S0040-4020(01)80760-2 |
(b) Ruck, R.-T.; Huffman, M.-A.; Kim, M.-M.; Shevlin, M.; Kandur, W.-V.; Davies, I.-W. Angew. Chem., Int. Ed. 2008, 47, 4711.
doi: 10.1002/(ISSN)1521-3773 |
|
(c) Satyanarayana, G.; Maichle-Mossmer, C.; Maier, M.-E. Chem. Commun. 2009, 1571.
|
|
(d) Piou, T.; Neuville, L.; Zhu, J.-P. Org. Lett. 2012, 14, 3760.
doi: 10.1021/ol301616w |
|
(e) Piou, T.; Neuville, L.; Zhu, J.-P. Angew. Chem., Int. Ed. 2012, 124, 11729.
|
|
(f) Ye, J.-T.; Shi, Z.-H.; Sperger, T.; Yasukawa, Y.; Kingston, C.; Schoenebeck, F.; Lautens, M. Nat. Chem. 2017, 9, 361.
doi: 10.1038/nchem.2631 |
|
[13] |
(a) Zheng, H.-J.; Zhu, J.-P.; Shi, Y.-A. Angew. Chem., Int. Ed. 2014, 53, 11280.
doi: 10.1002/anie.201405365 pmid: 32309953 |
(b) Sickert, M.; Weinstabl, H.; Peters, B.; Hou, X.; Lautens, M. Angew. Chem., Int. Ed. 2014, 126, 5247.
pmid: 32309953 |
|
(c) Yoon, H.; Lossouarn, A.; Landau, F.; Lautens, M. Org. Lett. 2016, 18, 6324.
doi: 10.1021/acs.orglett.6b03213 pmid: 32309953 |
|
(d) Perez-Gomez, M.; Hernandez-Ponte, S.; Bautista, D.; Garcia-Lopez, J.-A. Chem. Commun. 2017, 53, 2842.
doi: 10.1039/C7CC00065K pmid: 32309953 |
|
(e) Shao, C.-D.; Wu, Z.; Ji, X.-M.; Zhou, B.; Zhang, Y.-H. Chem. Commun. 2017, 53, 10429.
doi: 10.1039/C7CC06196J pmid: 32309953 |
|
(f) Yoon, H.; Rolz, M.; Landau, F.; Lautens, M. Angew. Chem., Int. Ed. 2017, 56, 10920.
doi: 10.1002/anie.201706325 pmid: 32309953 |
|
(g) Luo, X.-A.; Zhou, L.-W.; Lu, H.-Y.; Deng, G.-B.; Liang, Y.; Yang, C.-M. Org. Lett. 2019, 21, 9960.
doi: 10.1021/acs.orglett.9b03883 pmid: 32309953 |
|
(h) Wollenburg, M.; Bajohr, J.; Marchese, A.-D.; Whyte, A.; Glorius, F.; Lautens, M. Org. Lett. 2020, 22, 3679.
doi: 10.1021/acs.orglett.0c01169 pmid: 32309953 |
|
[14] |
(a) Wilson, J. E. Tetrahedron Lett. 2012, 53, 2308.
doi: 10.1016/j.tetlet.2012.02.096 pmid: 22799494 |
(b) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2012, 14, 3858.
doi: 10.1021/ol301539p pmid: 22799494 |
|
(c) Schempp, T.-T.; Daniels, B.-E.; Staben, S.-T.; Stivala, C.-E. Org. Lett. 2017, 19, 3616.
doi: 10.1021/acs.orglett.7b01606 pmid: 22799494 |
|
(d) Zhang, Z.-M.; Xu, B.; Wu, L.-Z.; Qian, Y.-Y.; Wu, Y.-Q.; Zhou, L.-J.; Zhang, J.-L. Angew. Chem., Int. Ed. 2019, 58, 14653.
doi: 10.1002/anie.v58.41 pmid: 22799494 |
|
(e) Zhou, M.-B.; Huang, X.-C.; Liu, Y.-Y.; Song, R.-J.; Li, J.-H. Chem.-Eur. J. 2014, 20, 1843.
doi: 10.1002/chem.v20.7 pmid: 22799494 |
|
(f) Liu, R.-R.; Wang, Y.-G.; Li, Y.-L.; Huang, B.-B.; Liang, R.-X.; Jia, Y.-X. Angew. Chem., Int. Ed. 2017, 56, 7475.
doi: 10.1002/anie.201703833 pmid: 22799494 |
|
(g) Zhou, L.-J.; Li, S.-L.; Xu, B.; Ji, D.-T.; Wu, L.-Z.; Liu, Y.; Zhang, Z.-M.; Zhang, J.-L. Angew. Chem., Int. Ed. 2020, 59, 2769.
doi: 10.1002/anie.v59.7 pmid: 22799494 |
|
(h) Bai, X.-F.; Wu, C.-Z.; Ge, S.-Z.; Lu, Y.-X. Angew. Chem., Int. Ed. 2020, 59, 2764.
doi: 10.1002/anie.v59.7 pmid: 22799494 |
|
[15] |
(a) Kennewellb, P.; Teasdale, A. J.; Grigg, R. Tetrahedron Lett. 1992, 33, 1189.
|
(b) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2010, 12, 3723.
|
|
(c) Hu, M.-A.; Gao, Y.; Li, J.-X.; Wu, W.-Q.; Li, C.-S.; Jiang, H.; Jiang, H.-F. Org. Biomol. Chem. 2018, 16, 7383.
doi: 10.1039/C8OB02092B |
|
(d) Hu, H.-Z.; Teng, F.; Liu, J.; Hu, W.-M.; Luo, S.; Zhu, Q. Angew. Chem., Int. Ed. 2019, 58, 9225.
doi: 10.1002/anie.v58.27 |
|
[16] |
(a) Kong, W.-Q.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2016, 55, 9714.
doi: 10.1002/anie.201603950 |
(b) Yao, T.-L.; Wang, B.; He, D.; Zhang, X.-F.; Li, X.; Fang, R. Org. Lett. 2020, 22, 6784.
doi: 10.1021/acs.orglett.0c02297 |
|
[17] |
(a) Liu, X.-L.; Ma, X.-N.; Huang, Y.-Z.; Gu, Z.-H. Org. Lett. 2013, 15, 4814.
doi: 10.1021/ol402210a |
(b) Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. J. Org. Chem. 2015, 80, 7456.
doi: 10.1021/acs.joc.5b01024 |
|
(c) Liu, X.-L.; Li, B.; Gu, Z.-H. J. Org. Chem. 2015, 80, 7547.
doi: 10.1021/acs.joc.5b01126 |
|
[18] |
Wang, M.; Zhang, X.; Zhuang, Y.-X.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 1341.
doi: 10.1021/ja512212x pmid: 25545361 |
[19] |
(a) Tang, S.-Y.; Guo, Q.-X.; Fu, Y. Chem.-Eur. J. 2011, 17, 13866.
doi: 10.1002/chem.v17.49 pmid: 26379033 |
(b) Glover, B.; Harvey, K.-A.; Liu, B.; Sharp, M.-J. Org. Lett. 2003, 5, 301.
pmid: 26379033 |
|
(c) Petrone, D.-A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838.
doi: 10.1021/acs.orglett.5b02403 pmid: 26379033 |
[1] | 王永玲, 张铁欣, 张栩铭, 孙晗扬, 冷津瑶, 李亚明. 可见光催化N-芳基乙醛酸亚胺脱羧烷基化合成非天然氨基酸衍生物[J]. 有机化学, 2023, 43(12): 4284-4293. |
[2] | 景智霞, 杜建喜, 蒋平, 阿布拉江•克依木. 四丁基碘化胺介导烷基酰胺与酰肼一锅法构建1,3,4-噁二唑衍生物[J]. 有机化学, 2023, 43(11): 3930-3938. |
[3] | 乃比江•赛米, 张蕾, 买地娜•沙拉木, 曾竟, 阿布都热西提•阿布力克木. 硫代磺酸酯和磺酰卤的绿色合成研究[J]. 有机化学, 2023, 43(1): 236-243. |
[4] | 王苛莉, 黄静, 刘伟, 伍智林, 于贤勇, 蒋俊, 何卫民. 由N-(2-丙炔基)苯胺和磺酰氯直接合成3-砜基喹啉[J]. 有机化学, 2022, 42(8): 2527-2534. |
[5] | 张文生, 李焱, 崔海燕, 苏小莉, 徐素鹏. 邻甲酰基苯甲酸甲酯还原胺化/内酰胺化一锅法合成N-取代异吲哚-1-酮[J]. 有机化学, 2022, 42(8): 2456-2461. |
[6] | 袁飞, 赵艳, 郭青松, 尹福丹, 赖金荣, 念倍芳, 张明, 汤峨. 乙烯基硒盐参与的串联反应合成1-[1-(胺基)环丙基]酮化合物[J]. 有机化学, 2022, 42(6): 1759-1769. |
[7] | 罗享豪, 谢益碧, 黄年玉, 王龙. 基于原位捕获异腈的Ugi四组分反应及其后修饰串联反应: 一锅法合成含氮杂环化合物[J]. 有机化学, 2022, 42(3): 838-846. |
[8] | 郭钰钰, 陈祥杰, 李师伍, 蔡志华, 何林. 2-芳基乙烯苯并咪唑串联反应合成多取代二氢吡啶并[1,2-a]苯并咪唑衍生物[J]. 有机化学, 2021, 41(9): 3692-3700. |
[9] | 陈任宏, 吴桂贞, 杨凯, 叶斌, 陈庆凤, 汪朝阳. 一锅法合成N-呋喃酮基磺酰腙类化合物[J]. 有机化学, 2021, 41(7): 2750-2759. |
[10] | 刘金妮, 谢益碧, 阳青青, 黄年玉, 王龙. 基于原位捕获胺的Ugi四组分反应及其后修饰串联环化反应:“一锅法”合成六元、七元杂环化合物[J]. 有机化学, 2021, 41(6): 2374-2383. |
[11] | 胡智宇, 姜国芳, 祝志强, 龚伯桢, 谢宗波, 乐长高. 深共融溶剂促进的亨利-傅克烷基化串联反应[J]. 有机化学, 2021, 41(1): 325-332. |
[12] | 李阳, 董时雨, 秦洪伟, 唐冰月, 高文涛, 陈羽. 新型3-芳乙烯基喹喔啉-2-羧酸合成及结核杆菌亮氨酰-tRNA合成酶的抑制活性研究[J]. 有机化学, 2020, 40(9): 2817-2826. |
[13] | 何淑旺, 颜世强, 郭伟, 翟光喜, 张伟. 苯乙烯一锅法合成氨基醇[J]. 有机化学, 2020, 40(7): 2094-2098. |
[14] | 郭欣, 郭亚军, 孔德志, 卢会杰, 华远照, 王敏灿. 四氢呋喃螺氧化吲哚衍生物的一锅法高效合成[J]. 有机化学, 2020, 40(7): 1999-2007. |
[15] | 姚明, 张静静, 杨森, 熊航行. γ-三氧化二铝促进的炔烃碘代反应研究[J]. 有机化学, 2020, 40(7): 2153-2158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||