有机化学 ›› 2021, Vol. 41 ›› Issue (11): 4289-4305.DOI: 10.6023/cjoc202104049 上一篇 下一篇
综述与进展
收稿日期:
2021-04-25
修回日期:
2021-06-07
发布日期:
2021-07-05
通讯作者:
曾明
基金资助:
Liang Liua, Wenbo Liua, Dong-Mei Cuib, Ming Zenga()
Received:
2021-04-25
Revised:
2021-06-07
Published:
2021-07-05
Contact:
Ming Zeng
Supported by:
文章分享
芳酮类化合物具有多种生物活性, 同时也是重要的精细化工品, 因此其合成方法受到了广泛关注. 对近五至八年来芳酮类化合物的合成方法进行总结, 通过对其反应机理进行探讨, 将这些反应大致分为三类, 即通过过渡金属催化机理的偶联反应、通过自由基机理的反应及通过其他机理的反应, 期望为芳酮类化合物的合成新方法提供启发.
刘亮, 刘文波, 崔冬梅, 曾明. 芳酮类化合物的合成研究进展[J]. 有机化学, 2021, 41(11): 4289-4305.
Liang Liu, Wenbo Liu, Dong-Mei Cui, Ming Zeng. Progress in the Synthesis of Aroyl Compounds[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4289-4305.
[1] |
Zhu, X.-L.; Tian, X.-Q.; Xu, H.-H.; Wang, H.-M.; Chen, Q.-H.; Zeng, X.-H. Bioorg. Med. Chem. Lett. 2020, 30, 127554.
doi: 10.1016/j.bmcl.2020.127554 |
[2] |
Duan, J. X.; Cai, X.; Meng, F.; Lan, L.; Hart, C.; Matteucci, M. J. Med. Chem. 2007, 50, 1001.
doi: 10.1021/jm061348t |
[3] |
Mai, A.; Massa, S.; Ragno, R.; Cerbara, I.; Jesacher, F.; Loidl, P.; Brosch, G. J. Med. Chem. 2003, 46, 512.
doi: 10.1021/jm021070e |
[4] |
Han, Y.; Tian, Y.; Wang, R.; Fu, S.; Jiang, J.; Dong, J.; Qin, M.; Hou, Y.; Zhao, Y. Bioorg. Chem. 2020, 104, 104197.
doi: 10.1016/j.bioorg.2020.104197 |
[5] |
Turan-Zitouni, G.; Yurttaş, L.; Kaplancıklı, Z. A.; Can, Ö. D.; Demir Özkay, Ü. Med. Chem. Res. 2015, 24, 2406.
doi: 10.1007/s00044-014-1309-1 |
[6] |
Patch, R. J.; Brandt, B. M.; Asgari, D.; Baindur, N.; Chadha, N. K.; Georgiadis, T.; Cheung, W. S.; Petrounia, I. P.; Donatelli, R. R.; Chaikin, M. A.; Player, M. R. Bioorg. Med. Chem. Lett. 2007, 17, 6070.
doi: 10.1016/j.bmcl.2007.09.057 |
[7] |
Wang, L.; Guo, D.-G.; Wang, Y.-Y.; Zheng, C.-Z. RSC Adv. 2014, 4, 58895.
doi: 10.1039/C4RA11747F |
[8] |
Rane, R. A.; Telvekar, V. N. Bioorg. Med. Chem. Lett. 2010, 20, 5681.
doi: 10.1016/j.bmcl.2010.08.026 |
[9] |
Çınarlı, M.; Yüksektepe Ataol, Ç.; Çınarlı, E.; İdil, Ö. J. Mol. Struct. 2020, 1213, 128152.
doi: 10.1016/j.molstruc.2020.128152 |
[10] |
Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
doi: 10.1039/c1cs15093f pmid: 21792454 |
[11] |
Bode, K.-D.; Dieterich, D.; Eistert, B.; Gipp, R.; Henecka, H.; Herlinger, H.; Jira, R.; Kramer, D.; Kabbe, H.-J.; Lüttringhaus, A.; Regitz, M.; Schellhammer, C.-W.; Söll, H.; Stetter, H.; Wilms, H.; Wingler, F. Methoden der Organischen Chemie (Houben-Weyl), Thieme, Stuttgart, 1973, p. 268.
|
[12] |
Zhao, W.; Liu, W. Chin. J. Org. Chem. 2015, 35, 55. (in Chinese)
|
(赵蔚, 刘伟, 有机化学, 2015, 35, 55.)
doi: 10.6023/cjoc201407032 |
|
[13] |
Molle, G.; Bauer, P. J. Am. Chem. Soc. 1982, 104, 3481.
doi: 10.1021/ja00376a039 |
[14] |
Bosque, I.; Chinchilla, R.; Gonzalez-Gomez, J. C.; Guijarro, D.; Alonso, F. Org. Chem. Front. 2020, 7, 1717.
doi: 10.1039/D0QO00587H |
[15] |
Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114.
doi: 10.1002/anie.v48:23 |
[16] |
Swain, C. G. J. Am. Chem. Soc. 1947, 69, 2306.
doi: 10.1021/ja01202a018 |
[17] |
Arthuis, M.; Pontikis, R.; Florent, J.-C. Org. Lett. 2009, 11, 4608.
doi: 10.1021/ol901875z pmid: 19764711 |
[18] |
Zhao, M.-N.; Ran, L.; Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. ACS Catal. 2015, 5, 1210.
doi: 10.1021/cs5019106 |
[19] |
Tjutrins, J.; Arndtsen, B. A. J. Am. Chem. Soc. 2015, 137, 12050.
doi: 10.1021/jacs.5b07098 |
[20] |
Lian, Z.; Friis, S. D.; Skrydstrup, T. Chem. Commun. 2015, 51, 1870.
doi: 10.1039/C4CC09303H |
[21] |
Garrison Kinney, R.; Tjutrins, J.; Torres, G. M.; Liu, N. J.; Kulkarni, O.; Arndtsen, B. A. Nat. Chem. 2018, 10, 193.
doi: 10.1038/nchem.2903 pmid: 29359763 |
[22] |
Levesque, T. M.; Kinney, R. G.; Arndtsen, B. A. Chem. Sci. 2020, 11, 3104.
doi: 10.1039/d0sc00085j pmid: 34122815 |
[23] |
Quesnel, J. S.; Fabrikant, A.; Arndtsen, B. A. Chem. Sci. 2016, 7, 295.
doi: 10.1039/C5SC02949J |
[24] |
Lagueux-Tremblay, P.-L.; Fabrikant, A.; Arndtsen, B. A. ACS Catal. 2018, 8, 5350.
doi: 10.1021/acscatal.8b00757 |
[25] |
Odell, L. R.; Russo, F.; Larhed, M. Synlett 2012, 23, 685.
doi: 10.1055/s-0031-1290350 |
[26] |
Ningegowda, R.; Bhaskaran, S.; Sajith, A. M.; Aswathanarayanappa, C.; Padusha, M. S. A.; Shivananju, N. S.; Priya, B. S. Aust. J. Chem. 2017, 70, 44.
doi: 10.1071/CH16213 |
[27] |
Darbem, M. P.; Kanno, K. S.; de Oliveira, I. M.; Esteves, C. H. A.; Pimenta, D. C.; Stefani, H. A. New. J. Chem. 2019, 43, 696.
doi: 10.1039/C8NJ04540B |
[28] |
Dong, Y.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Qiao, H.; Wu, Y.; Wu, Y. Org. Chem. Front. 2016, 3, 720.
doi: 10.1039/C6QO00075D |
[29] |
Jafarpour, F.; Rashidi-Ranjbar, P.; Kashani, A. O. Eur. J. Org. Chem. 2011, 2011, 2128.
doi: 10.1002/ejoc.201001733 |
[30] |
Sun, N.; Sun, Q.; Zhao, W.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Adv. Synth. Catal. 2019, 361, 2117.
doi: 10.1002/adsc.v361.9 |
[31] |
Ismael, A.; Gevorgyan, A.; Skrydstrup, T.; Bayer, A. Org. Process Res. Dev. 2020, 24, 2665.
doi: 10.1021/acs.oprd.0c00325 |
[32] |
Ryotaro, N.; Hideki, Y.; Koichiro, O. Chem. Lett. 2011, 40, 904.
doi: 10.1246/cl.2011.904 |
[33] |
Roy, T.; Rydfjord, J.; Sävmarker, J.; Nordeman, P. Tetrahedron Lett. 2018, 59, 1230.
doi: 10.1016/j.tetlet.2018.02.035 |
[34] |
Wang, Z.; Yin, Z.; Wu, X.-F. Chem.-Eur. J. 2017, 23, 15026.
doi: 10.1002/chem.201703994 |
[35] |
Peng, J.-B.; Geng, H.-Q.; Li, D.; Qi, X.; Ying, J.; Wu, X.-F. Org. Lett. 2018, 20, 4988.
doi: 10.1021/acs.orglett.8b02109 |
[36] |
Ying, J.; Le, Z.; Wu, X.-F. Org. Chem. Front. 2020, 7, 2757.
doi: 10.1039/D0QO00874E |
[37] |
Ying, J.; Le, Z.; Bao, Z.-P.; Wu, X.-F. Org. Chem. Front. 2020, 7, 1006.
doi: 10.1039/D0QO00007H |
[38] |
Scheffold, R.; Orlinski, R. J. Am. Chem. Soc. 1983, 105, 7200.
doi: 10.1021/ja00362a047 |
[39] |
Arisawa, M.; Tanii, S.; Yamaguchi, M. Chem. Commun. 2014, 50, 15267.
doi: 10.1039/C4CC07759H |
[40] |
Zhang, Y.; Chen, J. L.; Chen, Z. B.; Zhu, Y. M.; Ji, S. J. J. Org. Chem. 2015, 80, 10643.
doi: 10.1021/acs.joc.5b01758 pmid: 26452462 |
[41] |
Ying, J.; Fu, L.-Y.; Zhou, C.; Qi, X.; Peng, J.-B.; Wu, X.-F. Eur. J. Org. Chem. 2018, 2018, 2780.
doi: 10.1002/ejoc.201800471 |
[42] |
Wang, Y.; Zhou, Y.; Lei, M.; Hou, J.; Jin, Q.; Guo, D.; Wu, W. Tetrahedron 2019, 75, 1180.
doi: 10.1016/j.tet.2019.01.023 |
[43] |
Geng, H.-Q.; Wang, L.-C.; Hou, C.-Y.; Wu, X.-F. Org. Lett. 2020, 22, 1160.
doi: 10.1021/acs.orglett.0c00015 |
[44] |
Higashi, S.; Uno, S.; Ohsuga, Y.; Noumi, M.; Saito, R. Tetrahedron Lett. 2020, 61, 152466.
doi: 10.1016/j.tetlet.2020.152466 |
[45] |
Li, Y.; Xiong, W.; Zhang, Z.; Xu, T. J. Org. Chem. 2020, 85, 6392.
doi: 10.1021/acs.joc.0c00161 |
[46] |
Weng, Y.; Yang, T.; Chen, H.; Chen, Z.; Zhu, M.; Zhan, X. ChemistrySelect 2019, 4, 14233.
doi: 10.1002/slct.v4.48 |
[47] |
Gong, J.; Hu, K.; Shao, Y.; Li, R.; Zhang, Y.; Hu, M.; Chen, J. Org. Biomol. Chem. 2020, 18, 488.
doi: 10.1039/C9OB02408E |
[48] |
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 6293.
doi: 10.1002/anie.201301663 |
[49] |
Li, W.; Zhang, S.; Feng, X.; Yu, X.; Yamamoto, Y.; Bao, M. Org. Lett. 2021, 23, 2521.
doi: 10.1021/acs.orglett.1c00464 |
[50] |
Luo, L.; Zhou, Z.; Zhu, J.; Lu, X.; Wang, H. Tetrahedron Lett. 2016, 57, 4987.
|
[51] |
Chatupheeraphat, A.; Liao, H.-H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724.
doi: 10.1021/jacs.7b12865 pmid: 29461813 |
[52] |
Liu, Z.; Wang, P.; Yan, Z.; Chen, S.; Mu, T. Beilstein J. Org. Chem. 2020, 16, 645.
doi: 10.3762/bjoc.16.61 |
[53] |
Zhang, Q.; Li, J.; Li, J.; Yuan, S.; Li, D. Tetrahedron Lett. 2020, 61, 152399.
doi: 10.1016/j.tetlet.2020.152399 |
[54] |
Monir, K.; Kumarbagdi, A.; Mishra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2014, 356, 1105.
doi: 10.1002/adsc.v356.5 |
[55] |
Kaswan, P.; Pericherla, K.; Saini, H. K.; Kumar, A. RSC Adv. 2015, 5, 3670.
doi: 10.1039/C4RA13056A |
[56] |
Li, J. J.; Song, C.; Cui, D.-M.; Zhang, C. Org. Biomol. Chem. 2017, 15, 5564.
doi: 10.1039/C7OB01018D |
[57] |
Behera, A.; Ali, W.; Guin, S.; Khatun, N.; Mohanta, P. R.; Patel, B. K. RSC Adv. 2015, 5, 33334.
doi: 10.1039/C5RA03836G |
[58] |
Pipaliya, B. V.; Chakraborti, A. K. J. Org. Chem. 2017, 82, 3767.
doi: 10.1021/acs.joc.7b00226 pmid: 28299930 |
[59] |
Zhao, B.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.
doi: 10.1039/C8QO00253C |
[60] |
Cao, H.; Pu, W.; Zhang, J.; Yan, P.; Zhang, J.; Xu, S. Synlett 2020, 31, 1287.
doi: 10.1055/s-0040-1707140 |
[61] |
Khatun, N.; Banerjee, A.; Santra, S. K.; Behera, A.; Patel, B. K. RSC Adv. 2014, 4, 54532.
doi: 10.1039/C4RA11014E |
[62] |
Joe, C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55, 4040.
doi: 10.1002/anie.201511438 |
[63] |
Wang, H.; Zhou, S.-L.; Guo, L.-N.; Duan, X.-H. Tetrahedron 2015, 71, 630.
doi: 10.1016/j.tet.2014.12.029 |
[64] |
Yuan, J.-W.; Yin, Q.-Y.; Yang, L.-R.; Mai, W.-P.; Mao, P.; Xiao, Y.-M.; Qu, L.-B. RSC Adv. 2015, 5, 88258.
doi: 10.1039/C5RA16573C |
[65] |
Pimpasri, C.; Sumunnee, L.; Yotphan, S. Org. Biomol. Chem. 2017, 15, 4320.
doi: 10.1039/C7OB00776K |
[66] |
Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.
doi: 10.1021/acs.orglett.5b02392 |
[67] |
Wang, C.-M.; Song, D.; Xia, P.-J.; Wang, J.; Xiang, H.-Y.; Yang, H. Chem.-Asian J. 2018, 13, 271.
doi: 10.1002/asia.201701738 |
[68] |
Lei, Z.; Banerjee, A.; Kusevska, E.; Rizzo, E.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2019, 58, 7318.
doi: 10.1002/anie.v58.22 |
[69] |
Meng, Q. Y.; Döben, N.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 19956.
doi: 10.1002/anie.v59.45 |
[70] |
Bergonzini, G.; Cassani, C.; Wallentin, C.-J. Angew. Chem., Int. Ed. 2015, 54, 14066.
doi: 10.1002/anie.201506432 |
[71] |
Dong, S.; Wu, G.; Yuan, X.; Zou, C.; Ye, J. Org. Chem. Front. 2017, 4, 2230.
doi: 10.1039/C7QO00453B |
[72] |
Xu, S.-M.; Chen, J.-Q.; Liu, D.; Bao, Y.; Liang, Y.-M.; Xu, P.-F. Org. Chem. Front. 2017, 4, 1331.
doi: 10.1039/C7QO00012J |
[73] |
Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265.
doi: 10.1002/anie.201408837 |
[74] |
Majek, M.; Jacobi von Wangelin, A. Angew. Chem., Int. Ed. 2015, 54, 2270.
doi: 10.1002/anie.201408516 |
[75] |
Koziakov, D.; Jacobi von Wangelin, A. Org. Biomol. Chem. 2017, 15, 6715.
doi: 10.1039/c7ob01572k pmid: 28770941 |
[76] |
Xu, G.-Q.; Xiao, T.-F.; Feng, G.-X.; Liu, C.; Zhang, B.; Xu, P.-F. Org. Lett. 2021. 23, 2846.
doi: 10.1021/acs.orglett.1c00226 |
[77] |
Zhu, H.-L.; Zeng, F.-L.; Chen, X.-L.; Sun, K.; Li, H.-C.; Yuan, X.-Y.; Qu, L.-B.; Yu, B. Org. Lett. 2021, 23, 2976.
doi: 10.1021/acs.orglett.1c00655 |
[78] |
Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.
doi: 10.1002/anie.201206518 |
[79] |
Jafarpour, F.; Abbasnia, M. J. Org. Chem. 2016, 81, 11982.
pmid: 27800677 |
[80] |
Gouthami, P.; Chavan, L. N.; Chegondi, R.; Chandrasekhar, S. J. Org. Chem. 2018, 83, 3325.
doi: 10.1021/acs.joc.8b00360 |
[81] |
Pan, Z.; Song, C.; Zhou, W.; Cui, D.-M.; Zhang, C. New. J. Chem 2020, 44, 6182.
doi: 10.1039/C9NJ05794C |
[82] |
Chauhan, J.; Luthra, T.; Sen, S. Eur. J. Org. Chem. 2018, 2018, 4776.
doi: 10.1002/ejoc.201800879 |
[83] |
Yamada, Y. M. A.; Arakawa, T.; Hocke, H.; Uozumi, Y. Angew. Chem., Int. Ed. 2007, 46, 704.
doi: 10.1002/(ISSN)1521-3773 |
[84] |
Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428.
doi: 10.1021/ol501353q |
[85] |
Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943.
doi: 10.1021/cr040679f |
[86] |
Lee, S.; Kim, S. A.; Jang, H.-Y. ACS Omega 2019, 4, 17934.
doi: 10.1021/acsomega.9b03064 |
[87] |
Zhao, P.; Yu, X.-X.; Zhou, Y.; Geng, X.; Wang, C.; Huang, C.; Wu, Y.-D.; Zhu, Y.-P.; Wu, A.-X. Org. Lett. 2020, 22, 7103.
doi: 10.1021/acs.orglett.0c02415 |
[1] | 关丽, 周艳艳, 毛永爆, 付恺森, 关文惠, 付义乐. 甲川链修饰菁染料的合成研究进展[J]. 有机化学, 2023, 43(8): 2682-2698. |
[2] | 刘悦灵, 钟欣欣, 张干兵. Pd(0)催化1-R-3-苯基亚丙基环丙烷(R=Me/H)与呋喃甲醛[3+2]环加成反应机理的密度泛函理论研究[J]. 有机化学, 2023, 43(2): 660-667. |
[3] | 宋树勇, 徐森苗. 三氟甲基烯烃的选择性C-F键活化最新进展[J]. 有机化学, 2023, 43(2): 411-425. |
[4] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[5] | 刘鹏, 钟富明, 廖礼豪, 谭伟强, 赵晓丹. 炔烃参与的去芳构化反应构建螺环己二烯酮类化合物的研究进展[J]. 有机化学, 2023, 43(12): 4019-4035. |
[6] | 黄泽鑫, 尹宇强, 贾丰成, 吴安心. 吲哚及其衍生物C2—C3键断裂的反应研究进展[J]. 有机化学, 2022, 42(7): 2028-2044. |
[7] | 石宇冰, 白文己, 母伟花, 李江平, 于嘉玮, 连冰. 钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展[J]. 有机化学, 2022, 42(5): 1346-1374. |
[8] | 龚婷婷, 陈智斌, 刘妙昌, 成江. 2-苯并呋喃-1(3H)-酮的合成研究进展[J]. 有机化学, 2022, 42(4): 1085-1100. |
[9] | 刘文启, 沈振陆, 徐森苗. 三苯基砷/铱催化的非活化一级碳氢键的双硼化反应合成1,1-偕二硼烷[J]. 有机化学, 2022, 42(4): 1101-1110. |
[10] | 朱有财, 丁欣欣, 孙莉, 刘振. CO2/C2H4耦合制备丙烯酸及其衍生物的研究进展[J]. 有机化学, 2022, 42(4): 965-977. |
[11] | 李征, 谷迎春, 徐大振, 费学宁, 张磊. 有机膦催化的[4+2]环加成反应机理的密度泛函理论研究[J]. 有机化学, 2022, 42(3): 830-837. |
[12] | 孔媛芳, 杨彬, 庄严, 张京玉, 孙德梅, 董春红. 基于二肽基肽酶4 (DPP-4)靶点设计的五种降糖活性杂环合成及构效关系研究进展[J]. 有机化学, 2022, 42(3): 770-784. |
[13] | 徐曼, 夏远志. 铑(III)催化N-苯氧基乙酰胺与亚甲基氧杂环丁酮氧化还原中性的碳氢活化/环化反应的机理研究[J]. 有机化学, 2021, 41(8): 3272-3278. |
[14] | 高中润, 王媛, 宋航, 徐正仁, 贾彦兴. 吲哚苄位碳正离子引发的串联环化反应的普适性和机理探究[J]. 有机化学, 2021, 41(8): 3126-3133. |
[15] | 邹晓亮, 徐森苗. 铱催化的(杂)芳烃远端区域选择性C—H硼化反应的最新进展[J]. 有机化学, 2021, 41(7): 2610-2620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||