有机化学 ›› 2021, Vol. 41 ›› Issue (11): 4306-4319.DOI: 10.6023/cjoc202105029 上一篇 下一篇
综述与进展
收稿日期:
2021-05-15
修回日期:
2021-06-21
发布日期:
2021-07-05
通讯作者:
柳竹青
基金资助:
Zhiqing Lib, Xiaoyang Qiub, Nan Mengb, Zhuqing Liua,b()
Received:
2021-05-15
Revised:
2021-06-21
Published:
2021-07-05
Contact:
Zhuqing Liu
Supported by:
文章分享
氢化苯并呋喃骨架广泛存在于生物活性分子、天然产物和药物分子中, 过渡金属催化的O-环己二烯酮型1,6-烯炔经分子内或分子间C—H键官能团化/环化串联反应是构建这类骨架较为经济、有效的方法. 总结了过渡金属催化O-环己二烯酮型1,6-烯炔经C—H键官能团化/环化串联反应合成氢化苯并呋喃类化合物反应的研究进展, 主要介绍了各类过渡金属催化的反应类型、反应机理和手性控制中配体的选择, 并对该领域所面临的挑战和发展前景进行了展望与探讨.
李志清, 邱潇杨, 孟楠, 柳竹青. 基于O-环己二烯酮型1,6-烯炔合成氢化苯并呋喃的反应研究进展[J]. 有机化学, 2021, 41(11): 4306-4319.
Zhiqing Li, Xiaoyang Qiu, Nan Meng, Zhuqing Liu. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4306-4319.
[1] |
(a) Al-Tel, T. H.; Srinivasulu, V.; Ramanathan, M.; Soares, N. C.; Sebastian, A.; Bolognesi, M. L.; Abu-Yousef, I. A.; Majdalawieh, A. Org. Biomol. Chem. 2020, 18, 8526.
doi: 10.1039/D0OB01550D |
(b) Shu, T.; Cossy, J. Chem. Soc. Rev. 2021, 50, 658.
doi: 10.1039/D0CS00666A |
|
(c) Reddy, C. R.; Yarlagadda, S.; Sridhar, B.; Reddy, B. V. S. Eur. J. Org. Chem. 2017, 2017, 5763.
doi: 10.1002/ejoc.v2017.38 |
|
[2] |
(a) Chen, B.; He, C. Y.; Chu, W. D.; Liu, Q. Z. Org. Chem. Front. 2021, 8, 825.
doi: 10.1039/D0QO01358G pmid: 26688596 |
(b) Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. Rev. 2004, 104, 1383.
pmid: 26688596 |
|
(c) Canesi, S.; Maertens, G.; Ménard, M.-A. Synthesis 2014, 46, 1573.
doi: 10.1055/s-00000084 pmid: 26688596 |
|
(d) Yang, W.; Sun, Z.; Zhang, J.; Li, Z.; Deng, W. P. Org. Chem. Front. 2019, 37, 216.
pmid: 26688596 |
|
(e) Kalstabakken, K. A.; Harned, A. M. Tetrahedron 2014, 70, 9571.
pmid: 26688596 |
|
[3] |
Tello-Aburto, R.; Harned, A. M. Org. Lett. 2009, 11, 3998.
doi: 10.1021/ol901642w pmid: 19708708 |
[4] |
(a) Wegner, J.; Ley, S. V.; Kirschning, A.; Hansen, A.-L.; Garcia, J. M.; Baxendale, I. R. Org. Lett. 2012, 14, 696.
doi: 10.1021/ol203158p pmid: 22946510 |
(b) Zhao, K.; Cheng, G.-J.; Yang, H.; Shang, H.; Zhang, X.; Wu, Y.-D.; Tang, Y. Org. Lett. 2012, 14, 4878.
pmid: 22946510 |
|
(c) Hexum, J. K.; Tello-Aburto, R.; Struntz, N. B.; Harned, A. M.; Harki, D. A. ACS Med. Chem. Lett. 2012, 3, 459.
doi: 10.1021/ml300034a pmid: 22946510 |
|
(d) Zhong, Y.-H.; Luo, Y.-X.; Luo, N.-H. Chin. J. Synth. Chem. 2020, 28, 1012. (in Chinese)
pmid: 22946510 |
|
(钟瑜红, 罗玉欣, 罗年华, 合成化学, 2020, 28, 1012.)
pmid: 22946510 |
|
(e) Zhang, Z. Y.; Jiao, N. Chin. J. Org. Chem. 2020, 40, 1790. (in Chinese)
doi: 10.6023/cjoc202000031 pmid: 22946510 |
|
(张梓曜, 焦宁, 有机化学, 2020, 40, 1790.)
doi: 10.6023/cjoc202000031 pmid: 22946510 |
|
(f) Yang, M.; Cao, S. X.; He, Z. J. Chin. J. Org. Chem. 2019, 39, 2235. (in Chinese)
doi: 10.6023/cjoc201904041 pmid: 22946510 |
|
(杨梅, 曹仕轩, 贺峥杰, 有机化学, 2019, 39, 2235.)
doi: 10.6023/cjoc201904041 pmid: 22946510 |
|
(g) Shi, W. Y.; Xu, J. Q.; Mao, B. M.; Jia, H.; Huang, J. X.; Guo, H. C. Chin. J. Org. Chem. 2020, 40, 756. (in Chinese)
doi: 10.6023/cjoc201907030 pmid: 22946510 |
|
(史望宇, 徐嘉擎, 毛比明, 贾皓, 黄家兴, 郭红超, 有机化学, 2020, 40, 756.)
doi: 10.6023/cjoc201907030 pmid: 22946510 |
|
[5] |
Anulakanapakorn, K.; Bunyapraphatsara, N.; Satayavivad, J. J. Sci. Soc. Thailand 1987, 13, 71.
doi: 10.2306/scienceasia1513-1874.1987.13.071 |
[6] |
Jetty, A.; Iyengar, D. S. Pharm. Biol. 2011, 38, 157.
doi: 10.1076/1388-0209(200004)3821-1FT157 |
[7] |
Gao, Y.-P.; Shen, Y.-H.; Zhang, S.-D.; Tian, J.-M.; Zeng, H.-W.; Ye, J.; Li, H.-L.; Shan, L.; Zhang, W.-D. Org. Lett. 2012, 14, 1954.
doi: 10.1021/ol3004639 |
[8] |
Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552.
doi: 10.1021/ja058337u |
[9] |
Takizawa, S.; Nguyen, T. M.; Grossmann, A.; Enders, D.; Sasai, H. Angew. Chem., Int. Ed. 2012, 51, 5423.
doi: 10.1002/anie.201201542 |
[10] |
(a) Wu, W.; Chen, T.; Chen, J.; Han, X. J. Org. Chem. 2018, 83, 1033.
doi: 10.1021/acs.joc.7b02641 |
(b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813.
doi: 10.1021/cr980054f |
|
[11] |
Tello-Aburto, R.; Kalstabakken, K. A.; Harned, A. M. Org. Biomol. Chem. 2013, 11, 5596.
doi: 10.1039/c3ob27491h pmid: 23715063 |
[12] |
Murthy, A. S.; Donikela, S.; Reddy, C. S.; Chegondi, R. J. Org. Chem. 2015, 80, 5566.
doi: 10.1021/acs.joc.5b00493 |
[13] |
Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 082.
|
[14] |
Takenaka, K.; Mohanta, S. C.; Sasai, H. Angew. Chem., Int. Ed. 2014, 53, 4675.
doi: 10.1002/anie.201311172 |
[15] |
Singh, A.; Shukla, R. K.; Volla, C. M. R. Chem. Commun. 2019, 55, 13442.
doi: 10.1039/C9CC07164D |
[16] |
Zhao, W.-C.; Wang, X.; Feng, J.; Tian, P.; He, Z.-T. Tetrahedron 2021, 79, 131862.
doi: 10.1016/j.tet.2020.131862 |
[17] |
Keilitz, J.; Newman, S. G.; Lautens, M. Org. Lett. 2013, 15, 1148.
doi: 10.1021/ol400363f |
[18] |
He, Z. T.; Tian, B.; Fukui, Y.; Tong, X.; Tian, P.; Lin, G. Q. Angew. Chem., Int. Ed. 2013, 52, 5314.
doi: 10.1002/anie.201300137 |
[19] |
Li, Q.-H.; Gao, D.; He, C.-Y.; Liao, Q.; Tan, Y.-X.; Wang, Y.-H.; Ding, R.; Lin, G.-Q.; Tian, P. Cell Rep. Phys. Sci. 2020, 1, 100222.
|
[20] |
Connor, C. J. O.; Beckmann, H. S.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 4444.
doi: 10.1039/c2cs35023h |
[21] |
Fukui, Y.; Liu, P.; Liu, Q.; He, Z. T.; Wu, N. Y.; Tian, P.; Lin, G. Q. J. Am. Chem. Soc. 2014, 136, 15607.
doi: 10.1021/ja5072702 pmid: 25338263 |
[22] |
Zhou, X. L.; Pan, Y.; Li, X. W. Angew. Chem., Int. Ed. 2017, 56, 8163.
doi: 10.1002/anie.v56.28 |
[23] |
Lu, H.; Fan, Z.; Xiong, C.; Zhang, A. Org. Lett. 2018, 20, 3065.
doi: 10.1021/acs.orglett.8b01099 |
[24] |
Tan, Y.-X.; Liu, X.-Y.; Zhang, S.-Q.; Xie, P.-P.; Wang, X.; Feng, K.-R.; Yang, S.-Q.; He, Z.-T.; Hong, X.; Tian, P.; Lin, G.-Q. CCS Chem. 2021, 3, 1582.
doi: 10.31635/ccschem.020.202000339 |
[25] |
Gao, D.; Wang, F.; Liu, X. Y.; Feng, K. R.; Zhao, J. Y.; Wang, Y. H.; Yang, X. D.; Tian, P.; Lin, G. Q. Adv. Synth. Catal. 2020, 362, 4384.
doi: 10.1002/adsc.v362.20 |
[26] |
Gollapelli, K. K.; Donikela, S.; Manjula, N.; Chegondi, R. ACS catal. 2018, 8, 1440.
doi: 10.1021/acscatal.7b04054 |
[27] |
(a) Schobert, H. Chem. Rev. 2014, 114, 1743.
doi: 10.1021/cr400276u pmid: 24256089 |
(b) Shirakura, M.; Suginome, M. Angew. Chem., Int. Ed. 2010, 49, 3827.
doi: 10.1002/anie.v49:22 pmid: 24256089 |
|
(c) Sawano, T.; Ashouri, A.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 18936.
doi: 10.1021/ja309756k pmid: 24256089 |
|
[28] |
Duan, C. L.; Tan, Y. X.; Zhang, J. L.; Yang, S.; Dong, H. Q.; Tian, P.; Lin, G. Q. Org. Lett. 2019, 21, 1690.
doi: 10.1021/acs.orglett.9b00249 |
[29] |
Teng, Q.; Thirupathi, N.; Tung, C. H.; Xu, Z. Chem. Sci. 2019, 10, 6863.
doi: 10.1039/c9sc02341k pmid: 31391909 |
[30] |
Teng, Q.; Mao, W.; Chen, D.; Wang, Z.; Tung, C. H.; Xu, Z. Angew. Chem., Int. Ed. 2020, 59, 2220.
doi: 10.1002/anie.v59.6 |
[31] |
Jiang, Y.; Li, P.; Wang, J.; Zhao, J.; Li, Y.; Zhang, Y.; Chang, J.; Liu, B.; Li, X. Org. Lett. 2020, 22, 438.
doi: 10.1021/acs.orglett.9b04191 |
[32] |
Su, L.; Dong, J.; Liu, L.; Sun, M.; Qiu, R.; Zhou, Y.; Yin, S. F. J. Am. Chem. Soc. 2016, 138, 12348.
doi: 10.1021/jacs.6b07984 |
[33] |
Liu, P.; Fukui, Y.; Tian, P.; He, Z. T.; Sun, C. Y.; Wu, N. Y.; Lin, G. Q. J. Am. Chem. Soc. 2013, 135, 11700.
doi: 10.1021/ja404593c |
[34] |
He, C.-Y.; Xie, L.-B.; Ding, R.; Tian, P.; Lin, G.-Q. Tetrahedron 2019, 75, 1682.
doi: 10.1016/j.tet.2018.12.002 |
[35] |
Anugu, R. R.; Chegondi, R. J. Org. Chem. 2017, 82, 6786.
doi: 10.1021/acs.joc.7b00936 |
[36] |
Xu, G.; Liu, K.; Sun, J. T. Org. Lett. 2017, 19, 6440.
doi: 10.1021/acs.orglett.7b03356 |
[37] |
McCoull, W.; Augustin, M.; Blake, C.; Ertan, A.; Kilgour, E.; Krapp, S.; Moore, J. E.; Newcombe, N. J.; Packer, M. J.; Rees, A.; Revill, J.; Scott, J. S.; Selmi, N.; Gerhardt, S.; Ogg, D. J.; Steinbacherc, S.; Whittamorea, P. R. O. Med. Chem. Commun. 2014, 5, 57.
doi: 10.1039/C3MD00234A |
[38] |
Pitts, C. R.; Lectka, T. Chem. Rev. 2014, 114, 7930.
doi: 10.1021/cr4005549 pmid: 24555548 |
[39] |
Shu, T.; Zhao, L.; Li, S.; Chen, X. Y.; von Essen, C.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2018, 57, 10985.
doi: 10.1002/anie.201806931 |
[40] |
(a) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196.
doi: 10.1002/(ISSN)1521-3773 |
(b) Ma, S. Chem. Rev. 2005, 105, 829.
|
|
[41] |
He, C. Y.; Tan, Y. X.; Wang, X.; Ding, R.; Wang, Y. F.; Wang, F.; Gao, D.; Tian, P.; Lin, G. Q. Nat. Commun. 2020, 11, 4293.
doi: 10.1038/s41467-020-18136-x |
[42] |
Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
doi: 10.1021/cr0684319 pmid: 18636778 |
[43] |
Cai, S.; Liu, Z.; Zhang, W.; Zhao, X.; Wang, D. Z. Angew. Chem., Int. Ed. 2011, 50, 11133.
doi: 10.1002/anie.v50.47 |
[44] |
(a) Talele, T. T. J. Med. Chem. 2016, 59, 8712.
doi: 10.1021/acs.jmedchem.6b00472 |
(b) Peh, G.; Floreancig, P. E. Org. Lett. 2012, 14, 5614.
doi: 10.1021/ol302744t |
|
[45] |
Munakala, A.; Gollapelli, K. K.; Nanubolu, J. B.; Chegondi, R. Org. Lett. 2020, 22, 7019.
doi: 10.1021/acs.orglett.0c02555 |
[46] |
(a) Wang, C. Synlett 2013, 24, 1606.
doi: 10.1055/s-00000083 |
(b) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816.
doi: 10.1021/acs.accounts.8b00028 |
|
[47] |
Liu, B.; Li, J.; Hu, P.; Zhou, X.; Bai, D.; Li, X. ACS catal. 2018, 8, 9463.
doi: 10.1021/acscatal.8b02560 |
[48] |
Tan, Y. X.; Liu, X. Y.; Zhao, Y. S.; Tian, P.; Lin, G. Q. Org. Lett. 2019, 21, 5.
doi: 10.1021/acs.orglett.8b03288 |
[49] |
Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A. R.; Montgomery, J. Acc. Chem. Res. 2015, 48, 1736.
doi: 10.1021/acs.accounts.5b00096 |
[50] |
Kumar, R.; Hoshimoto, Y.; Tamai, E.; Ohashi, M.; Ogoshi, S. Nat. Commun. 2017, 8, 32.
doi: 10.1038/s41467-017-00068-8 |
[51] |
Tsujihara, T.; Tomeba, M.; Ohkubo-Sato, S.; Iwabuchi, K.; Koie, R.; Tada, N.; Tamura, S.; Takehara, T.; Suzuki, T.; Kawano, T. Tetrahedron Lett. 2019, 60, 151148.
doi: 10.1016/j.tetlet.2019.151148 |
[52] |
Cabrera-Lobera, N.; Rodroguez-Salamanca, P.; Nieto-Carmona, J. C.; BuÇuel, E.; Cárdenas, D. J. Chem.-Eur. J. 2018, 24, 784.
doi: 10.1002/chem.201704401 pmid: 29105882 |
[53] |
Hong, Y. C.; Santhoshkumar, R.; Cheng, C. H. J. Chin. Chem. Soc. 2019, 66, 1221.
doi: 10.1002/jccs.v66.9 |
[54] |
Schultz, A. G.; Plummer, M.; Taveras, A. G.; Kullnig, R. K. J. Am. Chem. Soc. 1988, 110, 5547.
doi: 10.1021/ja00224a045 |
[55] |
(a) Zhu, S.; Pathigoolla, A.; Lowe, G.; Walsh, D. A.; Cooper, M.; Lewis, W.; Lam, H. W. Chem.-Eur. J. 2017, 23, 17598.
doi: 10.1002/chem.v23.69 |
(b) Nair, A. M.; Kumar, S.; Volla, C. M. R. Adv. Synth. Catal. 2019, 361, 4983.
doi: 10.1002/adsc.v361.21 |
|
(c) Ma, X.-L.; Wang, Q.; Feng, X.-Y.; Mo, Z.-Y.; Pan, Y.-M.; Chen, Y.-Y.; Xin, M.; Xu, Y.-L. Green Chem. 2019, 21, 3547.
doi: 10.1039/C9GC00570F |
|
[56] |
Mallick, R. K.; Dutta, S.; Vanjari, R.; Voituriez, A.; Sahoo, A. K. J. Org. Chem. 2019, 84, 10509.
doi: 10.1021/acs.joc.9b01445 |
[1] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[2] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[3] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[4] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[5] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[6] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[7] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[8] | 南宁, 吴双, 秦景灏, 李金恒. 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023, 43(10): 3414-3453. |
[9] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[10] | 桑田, 贾帆, 何静, 李春天, 刘岩, 刘平. I2催化β-酮腈与1H-吡唑-5-胺的环化反应[J]. 有机化学, 2023, 43(1): 195-201. |
[11] | 刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝. 构建2H-吡咯-2-酮骨架的研究进展[J]. 有机化学, 2023, 43(1): 57-73. |
[12] | 王川川, 马志伟, 侯学会, 杨龙华, 陈亚静. N-Ts氰胺在有机合成中的研究与应用[J]. 有机化学, 2023, 43(1): 74-93. |
[13] | 刘浩阳, 孙爽爽, 马献力, 陈艳艳, 徐燕丽. 可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物[J]. 有机化学, 2022, 42(9): 2867-2876. |
[14] | 王苛莉, 黄静, 刘伟, 伍智林, 于贤勇, 蒋俊, 何卫民. 由N-(2-丙炔基)苯胺和磺酰氯直接合成3-砜基喹啉[J]. 有机化学, 2022, 42(8): 2527-2534. |
[15] | 张智鑫, 翟彤仪, 朱伯汉, 钱鹏程, 叶龙武. 无金属催化炔酰胺分子内[4+2]环化反应合成四氢吲哚衍生物[J]. 有机化学, 2022, 42(5): 1501-1508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||