有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3366-3378.DOI: 10.6023/cjoc202105015 上一篇 下一篇
综述与进展
赵喜a, 区颖聪a, 刘艳a, Keiji Maruokab, 陈迁a,*()
收稿日期:
2021-05-10
修回日期:
2021-06-08
发布日期:
2021-07-05
通讯作者:
陈迁
基金资助:
Xi Zhaoa, Yingcong Oua, Yan Liua, Keiji Maruokab, Qian Chena()
Received:
2021-05-10
Revised:
2021-06-08
Published:
2021-07-05
Contact:
Qian Chen
Supported by:
文章分享
含硫有机化合物广泛应用于有机合成、医药、农药和功能材料等领域中, 发展绿色、温和、高效的有机硫化合物的合成方法具有重要意义. 作为理想的绿色氧化剂, 氧气可直接引发一些含硫化合物为硫中心自由基, 其参与的反应为构建S—S、P—S和C—S键提供了新途径. 该方法可避免使用毒性试剂、过渡金属和强氧化剂等, 而且反应条件温和. 依据反应类型的不同, 对近年来氧气引发的硫中心自由基参与的构建S—S、P—S和C—S键研究进展进行介绍.
赵喜, 区颖聪, 刘艳, Keiji Maruoka, 陈迁. 氧气引发的硫中心自由基参与的构建S—S、P—S和C—S键研究进展[J]. 有机化学, 2021, 41(9): 3366-3378.
Xi Zhao, Yingcong Ou, Yan Liu, Keiji Maruoka, Qian Chen. Recent Progress in the Construction of S—S, P—S and C—S Bonds Involving O2-Initiated Sulfur-Centered Radicals[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3366-3378.
[1] |
(a) Liu, H.; Jiang, X. Chem.-Asian J. 2013, 8, 2546.
pmid: 25144663 |
(b) Lee, C.-F.; Liu, Y.-C.; Badsara, S. S. Chem.-Asian J. 2014, 9, 706.
pmid: 25144663 |
|
(c) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
doi: 10.1021/cr500235v pmid: 25144663 |
|
(d) Zhang, L.; Niu, C.; Yang, X.; Qin, H.; Yang, J.; Wen, J.; Wang, H. Chin. J. Org. Chem. 2020, 40, 1117. (in Chinese).
doi: 10.6023/cjoc201912011 pmid: 25144663 |
|
( 张龙菲, 牛聪, 杨晓婷, 秦宏云, 杨建静, 文江伟, 王桦, 有机化学, 2020, 40, 1117.)
pmid: 25144663 |
|
(e) Wang, B.; Zhou, Y.; Luo, S.; Luo, X.; Chen, W.; Yang, S.; Wang, Z. Chin. J. Org. Chem. 2021, 41, 171. (in Chinese).
doi: 10.6023/cjoc202006064 pmid: 25144663 |
|
( 王柏文, 周永军, 罗时荷, 罗晓燕, 陈伟清, 杨诗敏, 汪朝阳, 有机化学, 2021, 41, 171.)
pmid: 25144663 |
|
[2] |
(a) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2017, 19, 1100.
doi: 10.1021/acs.orglett.7b00126 pmid: 32841024 |
(b) Qiu, G; Lai, L.; Cheng, J.; Wu, J. Chem. Commun. 2018, 54, 10405.
doi: 10.1039/C8CC05847D pmid: 32841024 |
|
(c) Hu, J.; Huang, Y.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2019, 39, 177. (in Chinese).
doi: 10.6023/cjoc201808041 pmid: 32841024 |
|
( 胡娟娟, 黄焰根, 徐修华, 卿凤翎, 有机化学, 2019, 39, 177.)
pmid: 32841024 |
|
(d) Wang, J.-Y.; Ma, L.; Li, Y.; Wang, X.-S. Chin. J. Org. Chem. 2019, 39, 232. (in Chinese).
pmid: 32841024 |
|
( 王建勇, 马岚, 李彦, 王细胜, 有机化学, 2019, 39, 232.)
pmid: 32841024 |
|
(e) Guo, W.; Tao, K.; Tan, W.; Zhao, M.; Zheng, L.; Fan, X. Org. Chem. Front. 2019, 6, 2048.
doi: 10.1039/C8QO01353E pmid: 32841024 |
|
(f) Chen, Z.; Zhang, H.; Zhou, S.; Cui, X. Chin. J. Org. Chem. 2020, 40, 3866. (in Chinese).
doi: 10.6023/cjoc202007005 pmid: 32841024 |
|
( 陈志超, 张红, 周树锋, 崔秀灵, 有机化学, 2020, 40, 3866.)
pmid: 32841024 |
|
(g) Ghosh, A. K.; Mondal, S.; Hajra, A. Org. Lett. 2020, 22, 2771.
doi: 10.1021/acs.orglett.0c00759 pmid: 32841024 |
|
(h) Pramanik, M.; Choudhuri, K.; Mal, P. Org. Biomol. Chem. 2020, 18, 8771.
doi: 10.1039/D0OB01741H pmid: 32841024 |
|
(i) Choudhuri, T.; Pramanik, M.; Mal, P. J. Org. Chem. 2020, 85, 11997.
doi: 10.1021/acs.joc.0c01534 pmid: 32841024 |
|
[3] |
(a) Dénès, F.; Schiesser, C. H.; Renaud, P. Chem. Soc. Rev. 2013, 42, 7900.
doi: 10.1039/c3cs60143a |
(b) Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.
doi: 10.1021/cr400441m |
|
(c) Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W. Tetrahedron 2015, 71, 7481.
doi: 10.1016/j.tet.2015.04.117 |
|
(d) Yang, W.; Zhang, M.; Chen, W.; Yang, X.; Feng, J. Chin. J. Org. Chem. 2020, 40, 4060. (in Chinese).
doi: 10.6023/cjoc202005039 |
|
( 杨文超, 张明明, 陈旺, 杨小虎, 冯建国, 有机化学, 2020, 40, 4060.)
|
|
[4] |
(a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
doi: 10.1039/c2cs15224j |
(b) Xu, J.; Song, Q. Chin. J. Org. Chem. 2016, 36, 1151. (in Chinese).
|
|
( 许健, 宋秋玲, 有机化学, 2016, 36, 1151.)
|
|
[5] |
(a) Chen, Q.; Huang, Y.; Wang, X.; Wu, J.; Yu, G. Org. Biomol. Chem. 2018, 16, 1713.
doi: 10.1039/C8OB00244D |
(b) Wen, C.; Wu, J.; Ou, Y.; Huang, Y.; Zhang, K.; Chen, Q. Tetrahedron Lett. 2018, 59, 3609.
|
|
[6] |
Ruano, J. L. G.; Parra, A.; Alemán, J. Green Chem. 2008, 10, 706.
doi: 10.1039/b800705e |
[7] |
Liu, Y.; Wang, H.; Wang, C.; Wan, J.-P.; Wen, C. RSC Adv. 2013, 3, 21369.
doi: 10.1039/c3ra42915f |
[8] |
Qiu, X.; Yang, X.; Zhang, Y.; Song, S.; Jiao, N. Org. Chem. Front. 2019, 6, 2220.
doi: 10.1039/c9qo00239a |
[9] |
Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu, J.; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 2487.
doi: 10.1002/anie.201612190 |
[10] |
He, W.; Hou, X.; Li, X.; Song, L.; Yu, Q.; Wang, Z. Tetrahedron 2017, 73, 3133.
doi: 10.1016/j.tet.2017.04.035 |
[11] |
Wen, C.; Chen, Q.; Huang, Y.; Wang, X.; Yan, X.; Zeng, J.; Huo, Y.; Zhang, K. RSC Adv. 2017, 7, 45416.
doi: 10.1039/C7RA09057A |
[12] |
Kharasch, M. S.; Nudenberg, W.; Mantell, G. J. J. Org. Chem. 1951, 16, 524.
doi: 10.1021/jo01144a005 |
[13] |
Kamal, A.; Reddy, D. R.; Rajendar, J. Mol. Catal. A 2007, 272, 26.
doi: 10.1016/j.molcata.2007.03.014 |
[14] |
Wang, H.; Lu, Q.; Qian, C.; Liu, C.; Liu, W.; Chen, K.; Lei, A. Angew. Chem. Int. Ed. 2016, 55, 1094.
doi: 10.1002/anie.201508729 |
[15] |
Huo, C.; Wang, Y.; Yuan, Y.; Chen, F.; Tang, J. Chem. Commun. 2016, 52, 7233.
doi: 10.1039/C6CC01937D |
[16] |
Wang, Y.; Jiang, W.; Huo, C. J. Org. Chem. 2017, 82, 10628.
doi: 10.1021/acs.joc.7b01371 |
[17] |
Lu, Q.; Wang, H.; Peng, P.; Liu, C.; Huang, Z.; Luo, Y.; Lei, A. Org. Chem. Front. 2015, 2, 908.
doi: 10.1039/C5QO00102A |
[18] |
Wang, H.; Wang, G.; Lu, Q.; Chiang, C.-W.; Peng, P.; Zhou, J.; Lei, A. Chem.-Eur. J. 2016, 22, 14489.
|
[19] |
Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2016, 18, 6424.
doi: 10.1021/acs.orglett.6b03324 |
[20] |
Yu, G.; Ou, Y.; Chen, D.; Huang, Y.; Yan, Y.; Chen, Q. Synlett 2020, 31, 83.
doi: 10.1055/s-0039-1691493 |
[21] |
Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.
doi: 10.1039/C9GC00222G |
[22] |
Chun, S.; Chung, J.; Park, J. E.; Chung, Y. K. ChemCatChem 2016, 8, 2476.
doi: 10.1002/cctc.201600363 |
[23] |
Choudhuri, K.; Mandal, A.; Mal, P. Chem. Commun. 2018, 54, 3759.
doi: 10.1039/C8CC01359D |
[24] |
Liu, K.; Jia, F.; Xi, H.; Li, Y.; Zheng, X.; Guo, Q.; Shen, B.; Li, Z. Org. Lett. 2013, 15, 2026.
doi: 10.1021/ol400719d |
[25] |
Sahoo, H.; Singh, S.; Baidya, M. Org. Lett. 2018, 20, 3678.
doi: 10.1021/acs.orglett.8b01474 |
[26] |
Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem. Int. Ed. 2013, 52, 7156.
doi: 10.1002/anie.201301634 |
[27] |
Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
doi: 10.1021/ja4052685 |
[28] |
Lu, Q.; Chen, J.; Liu, C.; Huang, Z.; Peng, P.; Wang, H.; Lei, A. RSC Adv. 2015, 5, 24494.
doi: 10.1039/C4RA17106C |
[29] |
Shen, T.; Yuan, Y.; Song, S.; Jiao, N. Chem. Commun. 2014, 50, 4115.
doi: 10.1039/c4cc00401a |
[30] |
Wei, W.; Liu, X.; Yang, D.; Dong, R.; Cui, Y.; Yuan, F.; Wang, H. Tetrahedron Lett. 2015, 56, 1808.
doi: 10.1016/j.tetlet.2015.02.043 |
[31] |
Liu, C.; Ding, L.; Guo, G.; Liu, W. Eur. J. Org. Chem. 2016, 2016, 910.
doi: 10.1002/ejoc.201501613 |
[32] |
Liang, X.; Xiong, M.; Zhu, H.; Shen, K.; Pan, Y. J. Org. Chem. 2019, 84, 11210.
doi: 10.1021/acs.joc.9b01400 pmid: 31309831 |
[33] |
Liu, K.; Li, D.-P.; Zhou, S.-F.; Pan, X.-Q.; Shoberu, A.; Zou, J.-P. Tetrahedron 2015, 71, 4031.
doi: 10.1016/j.tet.2015.04.071 |
[34] |
Liao, Y.; Jiang, P.; Chen, S.; Xiao, F.; Deng, G.-J. RSC Adv. 2013, 3, 18605.
doi: 10.1039/c3ra43989e |
[35] |
(a) Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, T.; Sun, J.; Wei, W.; Wang, H. RSC Adv. 2016, 6, 51830.
doi: 10.1039/C6RA09739A |
(b) Sun, P.; Yang, D.; Wei, W.; Jiang, L.; Wang, Y.; Dai, T.; Wang, H. Org. Chem. Front. 2017, 4, 1367.
doi: 10.1039/C7QO00218A |
|
[36] |
Chen, Q.; Wang, X.; Wen, C.; Huang, Y.; Yan, X.; Zeng, J. RSC Adv. 2017, 7, 39758.
doi: 10.1039/C7RA06904A |
[37] |
Jiang, Y.; Zou, J.-X.; Huang, L.-T.; Peng, X.; Deng, J.-D.; Zhu, L.-Q.; Yang, Y.-H.; Feng, Y.-Y.; Zhang, X.-Y.; Wang, Z. Org. Biomol. Chem. 2018, 16, 1641.
doi: 10.1039/c8ob00080h pmid: 29461552 |
[38] |
Chen, Q.; Huang, Y.; Wang, X.; Wen, C.; Yan, X.; Zeng, J. Tetrahedron Lett. 2017, 58, 3928.
doi: 10.1016/j.tetlet.2017.08.067 |
[39] |
Jiang, Y.; Deng, J.-d.; Wang, H.-h.; Zou, J.-x.; Wang, Y.-q.; Chen, J.-h.; Zhu, L.-q.; Zhang, H.-h.; Peng, X.; Wang, Z. Chem. Commun. 2018, 54, 802.
doi: 10.1039/C7CC09026A |
[40] |
Zou, J.-X.; Wang, Y.-Q.; Huang, L.-T.; Jiang, Y.; Chen, J.-H.; Zhu, L.-Q.; Yang, Y.-H.; Feng, Y.-Y.; Peng, X.; Wang, Z. Org. Chem. Front. 2018, 5, 2317.
doi: 10.1039/C8QO00435H |
[41] |
Chen, Q.; Yu, G.; Wang, X.; Huang, Y.; Yan, Y.; Huo, Y. Org. Biomol. Chem. 2018, 16, 4086.
doi: 10.1039/C8OB00877A |
[42] |
Huang, L.-S.; Han, D.-Y.; Xu, D.-Z. Adv. Synth. Catal. 2019, 361, 4016.
doi: 10.1002/adsc.v361.17 |
[43] |
Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Green Chem. 2019, 21, 798.
doi: 10.1039/C8GC03898H |
[1] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[2] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[3] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[4] | 胡朝明, 吴纪红, 吴晶晶, 吴范宏. 直接三氟甲硒基化反应研究进展[J]. 有机化学, 2023, 43(1): 36-56. |
[5] | 宇世伟, 陈兆华, 陈淇, 林舒婷, 何金萍, 陶冠燊, 汪朝阳. 硫代磺酸酯的合成与应用研究进展[J]. 有机化学, 2022, 42(8): 2322-2330. |
[6] | 张力之, 廖永剑, 陈宁, 黄磊, 周敏. 叔丁醇钾促进的环化和偶联反应[J]. 有机化学, 2022, 42(7): 1950-1959. |
[7] | 李亚东, 吴鹏举, 杨志勇. 可见光催化苯并噁唑与α-酮酸合成芳基苯并噁唑[J]. 有机化学, 2022, 42(6): 1770-1777. |
[8] | 师静, 郭鹏飞, 李蔚, 孙海静, 孟令武, 仝新利. 铜(I)催化生物质基平台化合物糠醛与直链醇的氧化-缩合反应[J]. 有机化学, 2022, 42(3): 905-909. |
[9] | 乐柏佟, 吴新鑫, 朱晨. 烯基自由基参与的分子内氢原子转移反应的新进展[J]. 有机化学, 2022, 42(2): 458-470. |
[10] | 孙亚敏, 李锡勇, 袁金伟, 余加琳, 刘帅楠. 温和条件下以芳基胺为原料CuI催化下区域选择性合成3-芳基香豆素[J]. 有机化学, 2022, 42(2): 631-640. |
[11] | 许耀辉, 吴镇, 吴新鑫, 朱晨. 无过渡金属参与的醚、醛和酰胺C—H键自由基炔基化和烯丙基化反应[J]. 有机化学, 2022, 42(12): 4340-4349. |
[12] | 徐浩, 张杰, 左峻泽, 王丰晓, 吕健, 混旭, 杨道山. 硫鎓盐在可见光催化构建C—C键及C—杂原子键中的应用进展[J]. 有机化学, 2022, 42(12): 4037-4059. |
[13] | 肖潜, 佟庆笑, 钟建基. 基于自由基串联环化反应合成苯并吖庚因衍生物的研究进展[J]. 有机化学, 2022, 42(12): 3979-3994. |
[14] | 高盼盼, 肖文精, 陈加荣. 可见光促进的烯烃合成研究进展[J]. 有机化学, 2022, 42(12): 3923-3943. |
[15] | 张孟琪, 南光明, 赵晓辉, 魏伟. 可见光介导喹喔啉-2(1H)-酮C3-H缩醛化反应[J]. 有机化学, 2022, 42(12): 4315-4322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||