有机化学 ›› 2022, Vol. 42 ›› Issue (12): 4340-4349.DOI: 10.6023/cjoc202207014 上一篇 下一篇
所属专题: 自由基化学专辑
研究论文
收稿日期:
2022-07-06
修回日期:
2022-08-14
发布日期:
2022-09-01
通讯作者:
朱晨
作者简介:
基金资助:
Yaohui Xua, Zhen Wua, Xinxin Wua, Chen Zhua,b()
Received:
2022-07-06
Revised:
2022-08-14
Published:
2022-09-01
Contact:
Chen Zhu
About author:
Supported by:
文章分享
醚、醛和酰胺类化合物广泛存在于天然产物和药物分子中, 并作为常见廉价原料应用于合成化学中. 通过自由基反应途径实现杂原子α位C—H键官能化为这些化合物的结构改造提供了高效策略. 报道了一例通过二三氟醋酸碘苯(PIFA)在光照下直接攫氢产生碳自由基实现C—H键炔基化和烯丙基化反应的新策略. 该方法操作简单, 能够以中等到良好的产率实现醚、醛和酰胺C—H键的炔基化和烯丙基化反应. 反应条件温和, 不需要使用过渡金属催化剂, 官能团兼容性广, 适用于醚、醛和酰胺以及形式多样的炔基和烯丙基砜试剂.
许耀辉, 吴镇, 吴新鑫, 朱晨. 无过渡金属参与的醚、醛和酰胺C—H键自由基炔基化和烯丙基化反应[J]. 有机化学, 2022, 42(12): 4340-4349.
Yaohui Xu, Zhen Wu, Xinxin Wu, Chen Zhu. Transition-Metal Free Radical-Mediated C—H Bond Alkynylation and Allylation of Ethers, Aldehydes and Amides[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4340-4349.
Entry | PIFA/ equiv. | THF/mL | K2CO3/ equiv. | Solvent | Yield/% |
---|---|---|---|---|---|
1b | 1.5 | — | 1.5 | MeCN | 36 |
2b | 1.5 | — | 1.5 | PhCF3 | 21 |
3b | 1.5 | — | 1.5 | DCM | 14 |
4b | 1.5 | — | 1.5 | DCE | 14 |
5b | 1.5 | — | 1.5 | DMSO | 29 |
6b | 1.5 | — | 1.5 | Acetone | 44 |
7b | 1.5 | — | 1.5 | EtOAc | 47 |
8b,c | 1.5 | — | 1.5 | EtOAc | 41 |
9b,d | 1.5 | — | 1.5 | EtOAc | 28 |
10 | 1.5 | 2 | 1.5 | — | 68 |
11e | 1.5 | 2 | 1.5 | — | 65 |
12 | 1.5 | 2 | — | — | 19 |
13 | 1.5 | 1 | 1.5 | — | 54 |
14 | 1.5 | 5 | 1.5 | — | 78 |
15 | 1.5 | 10 | 1.5 | — | 78 |
16e | 1.5 | 10 | 1.5 | — | 66 |
17e | 2 | 10 | 2 | — | 76 |
18e | 2 | 5 | 2 | — | 77 |
Entry | PIFA/ equiv. | THF/mL | K2CO3/ equiv. | Solvent | Yield/% |
---|---|---|---|---|---|
1b | 1.5 | — | 1.5 | MeCN | 36 |
2b | 1.5 | — | 1.5 | PhCF3 | 21 |
3b | 1.5 | — | 1.5 | DCM | 14 |
4b | 1.5 | — | 1.5 | DCE | 14 |
5b | 1.5 | — | 1.5 | DMSO | 29 |
6b | 1.5 | — | 1.5 | Acetone | 44 |
7b | 1.5 | — | 1.5 | EtOAc | 47 |
8b,c | 1.5 | — | 1.5 | EtOAc | 41 |
9b,d | 1.5 | — | 1.5 | EtOAc | 28 |
10 | 1.5 | 2 | 1.5 | — | 68 |
11e | 1.5 | 2 | 1.5 | — | 65 |
12 | 1.5 | 2 | — | — | 19 |
13 | 1.5 | 1 | 1.5 | — | 54 |
14 | 1.5 | 5 | 1.5 | — | 78 |
15 | 1.5 | 10 | 1.5 | — | 78 |
16e | 1.5 | 10 | 1.5 | — | 66 |
17e | 2 | 10 | 2 | — | 76 |
18e | 2 | 5 | 2 | — | 77 |
[1] |
(a) Kang, E. J.; Lee, E. Chem. Rev. 2005, 105, 4348.
pmid: 21504168 |
(b) Nakata, T. Chem. Rev. 2005, 105, 4314.
doi: 10.1021/cr040627q pmid: 21504168 |
|
(c) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
doi: 10.1021/jm200187y pmid: 21504168 |
|
[2] |
Wan, M.; Meng, Z.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 13845.
doi: 10.1002/anie.201407083 |
[3] |
(a) Willis, M. C. Chem. Rev. 2010, 110, 725.
doi: 10.1021/cr900096x pmid: 23789922 |
(b) Chinchilla, R.; Najera, C. Chem. Rev. 2014, 114, 1783.
doi: 10.1021/cr400133p pmid: 23789922 |
|
[4] |
Mukherjee, S.; Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 14723.
doi: 10.1002/anie.201708037 |
[5] |
Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 4486.
doi: 10.1021/ja953518p |
[6] |
Hoshikawa, T.; Kamijo, S.; Inoue, M. Org. Biomol. Chem. 2013, 11, 164.
doi: 10.1039/c2ob26785c pmid: 23117280 |
[7] |
Zhang, R.-Y.; Xi, L.-Y.; Zhang, L.; Liang, S.; Chen, S.-Y.; Yu, X.-Q. RSC Adv. 2014, 4, 54349.
doi: 10.1039/C4RA09646K |
[8] |
Paul, S.; Guin, J. Green Chem. 2017, 19, 2530.
doi: 10.1039/C7GC00840F |
[9] |
(a) Praveen Rao, P. N.; Jashim Uddin, M. D.; Knaus, E. E. J. Med. Chem. 2004, 47, 3972.
pmid: 15267236 |
(b) Arai, T.; Ikematsu, Y.; Suemitsu, Y. Pure Appl. Chem. 2010, 82, 1485.
doi: 10.1351/PAC-CON-09-09-08 pmid: 15267236 |
|
(c) Fraile, A.; Parra, A.; Tortosa, M.; Alemán, J. Tetrahedron 2014, 70, 9145.
doi: 10.1016/j.tet.2014.07.023 pmid: 15267236 |
|
(d) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E. Synthesis 2014, 46, 687.
doi: 10.1055/s-0033-1338594 pmid: 15267236 |
|
[10] |
(a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
doi: 10.1016/S0040-4039(00)91094-3 pmid: 21655588 |
(b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
pmid: 21655588 |
|
(c) Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084.
doi: 10.1039/c1cs15071e pmid: 21655588 |
|
(d) Dudnik, A.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2096.
doi: 10.1002/anie.200906755 pmid: 21655588 |
|
[11] |
(a) Brown, H. C.; Garg, C. P. J. Am. Chem. Soc. 1961, 83, 2952.
doi: 10.1021/ja01474a037 pmid: 24512630 |
(b) Jackson, M. M.; Leverett, C.; Toczko, J. F.; Roberts, J. C. J. Org. Chem. 2002, 67, 5032.
pmid: 24512630 |
|
(c) Maeda, Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.; Kawamura, T.; Uemura, S. J. Org. Chem. 2002, 67, 6718.
doi: 10.1021/jo025918i pmid: 24512630 |
|
(d) Annabelle, L. K.; Shi Shun, E. T.; Chernick, S. E.; Tykwinski, R. R. J. Org. Chem. 2003, 68, 1339.
pmid: 24512630 |
|
(e) Augé, J.; LubinGermain, N.; Seghrouchni, L. Tetrahedron Lett. 2003, 41, 819.
pmid: 24512630 |
|
(f) Ushijima, S.; Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 1436.
doi: 10.1016/j.tet.2011.12.023 pmid: 24512630 |
|
(g) Harigae, R.; Moriyama, K.; Togo, H. J. Org. Chem. 2014, 79, 2049.
doi: 10.1021/jo4027116 pmid: 24512630 |
|
(h) Yuan, J.; Wang, J.; Zhang, G.; Liu, C.; Qi, X.; Lan, Y.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. Chem. Commun. 2015, 51, 576.
doi: 10.1039/C4CC08152H pmid: 24512630 |
|
[12] |
(a) Kakusawa, N.; Yamaguchi, K.; Kurita, J.; Tsuchiya, T. Tetrahedron Lett. 2000, 41, 4143.
doi: 10.1016/S0040-4039(00)00554-2 pmid: 14987019 |
(b) Karpov, A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451.
doi: 10.1021/ol035212q pmid: 14987019 |
|
(c) Chen, L.; Li, C.-J. Org. Lett. 2004, 6, 3151.
doi: 10.1021/ol048789w pmid: 14987019 |
|
(d) Alonso, D. A.; Nájera, C.; Pacheco, M. C. J. Org. Chem. 2004, 69, 1615.
pmid: 14987019 |
|
(e) Wang, B.; Bonin, M.; Micouin, L. J. Org. Chem. 2005, 70, 6126.
doi: 10.1021/jo050760y pmid: 14987019 |
|
(f) D’Souza, D. M.; Müller, T. J. J. Nat. Protoc. 2008, 3, 1660.
doi: 10.1038/nprot.2008.152 pmid: 14987019 |
|
(g) Sun, W.; Wang, Y.; Wu, X.; Yao, X. Green Chem. 2013, 15, 2356.
doi: 10.1039/c3gc40980e pmid: 14987019 |
|
(h) Taylor, C.; Bolshan, Y. Org. Lett. 2014, 16, 488.
doi: 10.1021/ol403370t pmid: 14987019 |
|
(i) Yin, W.; He, H.; Zhang, Y.; Luo, D.; He, H. Synthesis 2014, 46, 2617.
doi: 10.1055/s-0034-1378358 pmid: 14987019 |
|
[13] |
(a) Kobayashi, T.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1981, 7, 333.
pmid: 20405958 |
(b) Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. J. Mol. Catal. A: Chem. 1995, 104, 17.
doi: 10.1016/1381-1169(95)00130-1 pmid: 20405958 |
|
(c) Mohamed Ahmed, M. S.; Mori, A. Org. Lett. 2003, 5, 3057.
doi: 10.1021/ol035007a pmid: 20405958 |
|
(d) Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 6951.
doi: 10.1002/anie.200501703 pmid: 20405958 |
|
(e) Liang, B.; Huang, M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70, 6097.
pmid: 20405958 |
|
(f) Liu, J.; Chen, J.; Xia, C. J. Catal. 2008, 253, 50.
doi: 10.1016/j.jcat.2007.10.021 pmid: 20405958 |
|
(g) Fusano, A.; Fukuyama, T.; Nishitani, S.; Inouye, T.; Ryu, I. Org. Lett. 2010, 12, 2410.
doi: 10.1021/ol1007668 pmid: 20405958 |
|
(h) Genelot, M.; Dufaud, V.; Djakovitch, L. Adv. Synth. Catal. 2013, 355, 2604.
doi: 10.1002/adsc.201300357 pmid: 20405958 |
|
(i) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114.
doi: 10.1002/anie.200900013 pmid: 20405958 |
|
[14] |
Ouyang, X.-H.; Song, R.-J.; Wang, C.-Y.; Yang, Y.; Li, J.-H. Chem. Commun. 2015, 51, 14497.
doi: 10.1039/C5CC03362D |
[15] |
Wang, H.; Guo, L.-N.; Wang, S.; Duan, X.-H. Org. Lett. 2015, 17, 3054.
doi: 10.1021/acs.orglett.5b01336 pmid: 26061400 |
[16] |
Mukherjee, S.; Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 14723.
doi: 10.1002/anie.201708037 |
[17] |
Li, L.; Guo, S.; Wang, Q.; Zhu, J. Org. Lett. 2019, 21, 5462.
doi: 10.1021/acs.orglett.9b01717 |
[18] |
(a) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343.
doi: 10.1038/s41467-018-05522-9 pmid: 32969219 |
(b) Tang, N.; Wu, X.; Zhu, C. Chem. Sci. 2019, 10, 6915.
doi: 10.1039/C9SC02564B pmid: 32969219 |
|
(c) Shao, X.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2020, 22, 7450.
doi: 10.1021/acs.orglett.0c02475 pmid: 32969219 |
|
[19] |
Wang, X.; Shao, X.; Cao, Z.; Wu, X.; Zhu, C. Adv. Synth. Catal. 2022, 364, 1200.
doi: 10.1002/adsc.202101447 |
[20] |
Li, X.; Liu, C.; Guo, S.; Wang, W.; Zhang, Y. Eur. J. Org. Chem. 2021, 3, 411.
|
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[3] | 秦浩, 侯传金, 梁丁化, 何心伟, 李玲, 胡向平. 手性P,N,N-配体/钯催化的不对称烯丙基取代反应[J]. 有机化学, 2024, 44(1): 282-290. |
[4] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[5] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[6] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[7] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[8] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[9] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[10] | 徐忠荣, 万结平, 刘云云. 基于热、光以及电化学过程的无过渡金属碳-氢键硫氰化和硒氰化反应[J]. 有机化学, 2023, 43(7): 2425-2446. |
[11] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
[12] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[13] | 孙丽, 宋国欣, 韩家乐, 李继玉, 赵月, 杨璐华, 张峰, 赵坤, 毛比明. Morita-Baylis-Hillman加合物和N-羟基邻苯二甲酰亚胺的电化学烯丙基烷基化形成C(sp3)—C(sp3)键[J]. 有机化学, 2023, 43(4): 1574-1583. |
[14] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[15] | 刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||