有机化学 ›› 2022, Vol. 42 ›› Issue (12): 4037-4059.DOI: 10.6023/cjoc202209004 上一篇 下一篇
所属专题: 自由基化学专辑
综述与进展
徐浩a, 张杰b, 左峻泽a, 王丰晓c, 吕健a, 混旭a,*(), 杨道山a,*()
收稿日期:
2022-09-05
修回日期:
2022-10-06
发布日期:
2022-10-31
通讯作者:
混旭, 杨道山
基金资助:
Hao Xua, Jie Zhangb, Junze Zuoa, Fengxiao Wangc, Jian Lüa, Xu Huna(), Daoshan Yanga()
Received:
2022-09-05
Revised:
2022-10-06
Published:
2022-10-31
Contact:
Xu Hun, Daoshan Yang
Supported by:
文章分享
硫鎓盐是具有三个碳硫键的带正电荷的最重要四价硫化合物之一. 由于硫鎓盐具有较高的化学稳定性、容易制备、结构多样、丰富的反应性等优点, 其作为反应底物在有机合成中得到了广泛应用. 近年来, 可见光促进的有机合成方法学引起了研究者极大的兴趣. 总结了各种硫鎓盐试剂在可见光诱导的自由基型反应中的研究进展, 介绍了各类 C—C键和C—X (X=B, N, O, S, Se, Te, F, Cl, I)键的形成反应, 并对部分反应的适用范围和机理进行了讨论.
徐浩, 张杰, 左峻泽, 王丰晓, 吕健, 混旭, 杨道山. 硫鎓盐在可见光催化构建C—C键及C—杂原子键中的应用进展[J]. 有机化学, 2022, 42(12): 4037-4059.
Hao Xu, Jie Zhang, Junze Zuo, Fengxiao Wang, Jian Lü, Xu Hun, Daoshan Yang. Recent Advances in Visible-Light-Catalyzed C—C Bonds and C—Heteroatom Bonds Formation Using Sulfonium Salts[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4037-4059.
[1] |
(a) Kozhushkov, S. I.; Alcarazo, M. Eur. J. Inorg. Chem. 2020, 2486.
|
(b) Wang, M.; Jiang, X. ACS Sustainable Chem. Eng. 2022, 10, 671.
doi: 10.1021/acssuschemeng.1c07636 |
|
(c) Gan, Z.; Zhu, X.; Yan, Q.; Song, X.; Yang, D. Chin. Chem. Lett. 2021, 32, 1705.
doi: 10.1016/j.cclet.2020.12.046 |
|
[2] |
Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
doi: 10.1021/jm401375q |
[3] |
(a) Mondal, M.; Chen, S.; Kerrigan, N. J. Molecules 2018, 23, 738.
doi: 10.3390/molecules23040738 |
(b) Nenaidenko, V. G.; Balenkova, E. S. Russ. J. Org. Chem. 2003, 39, 291.
doi: 10.1023/A:1025525327399 |
|
(c) Chen, J.; Li, J.; Plutschack, M. B.; Berger, F.; Ritter, T. Angew. Chem., Int. Ed. 2020, 59, 5616
doi: 10.1002/anie.201914215 |
|
(d) Chen, X.-Y.; Huang, Y.-H.; Zhou, J.; Wang, P. Chin. J. Chem. 2020, 38, 1269
doi: 10.1002/cjoc.202000212 |
|
(e) Nie, X.-X.; Huang, Y.-H.; Wang, P. Org. Lett. 2020, 22, 7716.
doi: 10.1021/acs.orglett.0c02913 |
|
(f) Kendall, A. J.; Mock, M. T. Eur. J. Inorg. Chem. 2020, 1347.
|
|
(g) Tian, Z.-Y.; Hu, Y.-T.; Teng, H.-B.; Zhang, C.-P. Tetrahedron Lett. 2018, 59, 299.
doi: 10.1016/j.tetlet.2017.12.005 |
|
(h) Chen, J.; Li, J.; Plutschack, M. B.; Berger, F.; Ritter, T. Angew. Chem., Int. Ed. 2020, 59, 5616.
doi: 10.1002/anie.201914215 |
|
(i) Kendall, A. J.; Mock, M. T. Eur. J. Inorg. Chem. 2020, 1347.
|
|
(j) Tian, Z.-Y.; Ma, Y.; Zhang, C.-P. Synthesis 2022, 54, 1478.
doi: 10.1055/a-1677-5971 |
|
(k) Wang, C.; Liu, B.; Shao, Z.; Zhou, J.; Shao, A.; Zou, L.-H.; Wen, J. Org. Lett. 2022, 24, 5391.
doi: 10.1021/acs.orglett.2c02078 |
|
[4] |
(a) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
doi: 10.1021/acs.chemrev.9b00111 |
(b) Kozhushkov, S. I.; Alcarazo, M. Eur. J. Inorg. Chem. 2020, 2486.
|
|
(c) Péter, Á.; Perry, G. J. P.; Procter, D. J. Adv. Synth. Catal. 2020, 362, 2135.
doi: 10.1002/adsc.202000220 |
|
(d) Yorimitsu, H. Chem. Rec. 2021, 21, 3356.
doi: 10.1002/tcr.202000172 |
|
(e) Tian, J.; Gao, W. C.; Jiang, X.-F. Chem. Reagents 2021, 43, 447. (in Chinese)
|
|
( 田俊, 高文超, 姜雪峰, 化学试剂, 2021, 43, 447.)
|
|
[5] |
Broderick, J. B.; Duffus, B. R.; Duschene, K. S.; Shepard, E. M. Chem. Rev. 2014, 114, 4229.
doi: 10.1021/cr4004709 pmid: 24476342 |
[6] |
(a) Aggarwal, V. K.; Winn, C. L. Acc. Chem. Res. 2004, 37, 611.
doi: 10.1021/ar030045f |
(b) Lu, L.-Q.; Li, T.-R.; Wang, Q.; Xiao, W.-J. Chem. Soc. Rev. 2017, 46, 4135.
doi: 10.1039/C6CS00276E |
|
(c) Shi, J.; Li, Y.; Li, Y. Chem. Soc. Rev. 2017, 46, 1707.
doi: 10.1039/C6CS00694A |
|
[7] |
Garst, M. E.; McBride, B. J.; Johnson, A. T. J. Org. Chem. 1983, 48, 8.
doi: 10.1021/jo00149a003 |
[8] |
Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
doi: 10.1039/C2CS35323G |
[9] |
Otsuka, S.; Nogi, K.; Yorimitsu, H. Top. Curr. Chem. 2018, 376, 13.
|
[10] |
(a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582.
doi: 10.1126/science.1142696 |
(b) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604.
doi: 10.1021/ja903732v |
|
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
doi: 10.1126/science.1239176 |
|
[11] |
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r pmid: 28762417 |
(b) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911
doi: 10.1021/acs.accounts.6b00254 pmid: 28762417 |
|
(c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 pmid: 28762417 |
|
(d) Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z.; Peng, Y.-Y.; He, W.-M. Green Chem. 2021, 23, 374.
doi: 10.1039/D0GC02844D pmid: 28762417 |
|
(e) Liu, Y.; Chen, X.-L.; Li, X.-Y.; Zhu, S.-S.; Li, S.-J.; Song, Y.; Qu, L.-B.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
doi: 10.1021/jacs.0c11138 pmid: 28762417 |
|
(f) Li, G.-H.; Han, Q.-Q.; Sun, Y.-Y.; Chen, D.-M.; Wang, Z.-L.; Xu, X.-M.; Yu, X.-Y. Chin. Chem. Lett. 2020, 31, 3255.
doi: 10.1016/j.cclet.2020.03.007 pmid: 28762417 |
|
(g) Wang, Z.; Liu, Q.; Ji, X.; Deng, G.-J.; Huang, H. ACS Catal. 2020, 10, 154.
doi: 10.1021/acscatal.9b04411 pmid: 28762417 |
|
(h) Kim, J.; Kim, D.; Chang, S. J. Am. Chem. Soc. 2020, 142, 19052.
doi: 10.1021/jacs.0c09982 pmid: 28762417 |
|
(i) Zhang, Q.-B.; Ban, Y.-L.; Zhou, D.-G.; Zhou, P.-P.; Wu, L.-Z.; Liu, Q. Org. Lett. 2016, 18, 5256.
doi: 10.1021/acs.orglett.6b02560 pmid: 28762417 |
|
(j) Wu, C.; Bian, Q.; Ding, T.; Tang, M.; Zhang, W.; Xu, Y.; Liu, B.; Xu, H.; Li, H.-B.; Fu, H. ACS Catal. 2021, 11, 9561.
doi: 10.1021/acscatal.1c02272 pmid: 28762417 |
|
(k) He, S.; Chen, X.; Zeng, F.; Lu, P.; Peng, Y.; Qu, L.; Yu, B. Chin. Chem. Lett. 2020, 31, 1863.
doi: 10.1016/j.cclet.2019.12.031 pmid: 28762417 |
|
(l) Yang, D.; Yan, Q.; Zhu, E.; Lv, J.; He, W.-M. Chin. Chem. Lett. 2022, 33, 1798.
doi: 10.1016/j.cclet.2021.09.068 pmid: 28762417 |
|
(m) Meng, N.; Lv, Y.; Liu, Q.; Liu, R.; Zhao, X.; Wei, W. Chin. Chem. Lett. 2021, 32, 258.
doi: 10.1016/j.cclet.2020.11.034 pmid: 28762417 |
|
(n) Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B. J. Am. Chem. Soc. 2019, 141, 11393.
doi: 10.1021/jacs.9b05360 pmid: 28762417 |
|
(o) Bagdi, A. K.; Rahman, M.; Bhattacherjee, D.; Zyryanov, G. V.; Ghosh, S.; Chupakhin, O. N.; Hajra, A. Green Chem. 2020, 22, 6632.
doi: 10.1039/D0GC02437F pmid: 28762417 |
|
(p) Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Nat. Commun. 2019, 10, 3592.
doi: 10.1038/s41467-019-11528-8 pmid: 28762417 |
|
(q) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
doi: 10.1039/c7cs00339k pmid: 28762417 |
|
(r) Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
doi: 10.1021/acs.accounts.8b00267 pmid: 28762417 |
|
[12] |
Speckmeier, E.; Fischer, T. G.; Zeitler, K. J. Am. Chem. Soc. 2018, 140, 15353.
doi: 10.1021/jacs.8b08933 pmid: 30277767 |
[13] |
Tam, W. J. Am. Chem. Soc. 2002, 124, 12630.
|
[14] |
Hu, J.; Zhu, Z.; Xie, Z.; Le, Z. Chin. J. Org. Chem. 2022, 42, 978. (in Chinese)
doi: 10.6023/cjoc202110020 |
( 胡家榆, 祝志强, 谢宗波, 乐长高, 有机化学, 2022, 42, 978.)
doi: 10.6023/cjoc202110020 |
|
[15] |
Hedstrand, D. M.; Kruizinga, W. H.; Kellogg, R. M. Tetrahedron Lett. 1978, 19, 1255.
doi: 10.1016/S0040-4039(01)94515-0 |
[16] |
Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898.
doi: 10.1039/C6CC05756J |
[17] |
Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.
doi: 10.1039/C7SC01703K |
[18] |
Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224.
doi: 10.1039/C8QO00430G |
[19] |
Varga, B.; Gonda, Z.; Tóth, B. L.; Kotschy, A.; Novák, Z. Eur. J. Inorg. Chem. 2020, 2020, 1466.
doi: 10.1002/ejoc.201900957 |
[20] |
Chen, C.; Wang, Z.-J.; Lu, H.; Zhao, Y.; Shi, Z. Nat. Commun. 2021, 12, 4526.
doi: 10.1038/s41467-021-24716-2 |
[21] |
Li, X.; Si, W.; Liu, Z.; Qian, H.; Wang, T.; Leng, S.; Sun, J.; Jiao, Y.; Zhang, X. Org. Lett. 2022, 24, 4070.
doi: 10.1021/acs.orglett.2c01525 |
[22] |
Yan, D.-M.; Xu, S.-H.; Qian, H.; Gao, P.-P.; Bi, M.-H.; Xiao, W.-J.; Chen, J.-R. ACS Catal. 2022, 12, 3279.
doi: 10.1021/acscatal.2c00638 |
[23] |
Donck, S.; Baroudi, A.; Fensterbank, L.; Goddard, J.-P.; Ollivier, C. Adv. Synth. Catal. 2013, 355, 1477.
doi: 10.1002/adsc.201300040 |
[24] |
(a) Cheng, Y.; Yuan, X.; Jiang, H.; Wang, R.; Ma, J.; Zhang, Y.; Yu, S. Adv. Synth. Catal. 2014, 356, 2859.
doi: 10.1002/adsc.201400504 |
(b) Wang, H.; Cheng, Y.; Yu, S. Sci. China: Chem. 2016, 59, 195.
|
|
(c) Yu, S.; Zhang, Y.; Wang, R.; Jiang, H.; Cheng, Y.; Kadi, A.; Fun, H.-K. Synthesis 2014, 46, 2711.
doi: 10.1055/s-0034-1379217 |
|
[25] |
Otsuka, S.; Nogi, K.; Rovis, T.; Yorimitsu, H. Chem. Asian. J. 2019, 14, 532.
doi: 10.1002/asia.201801732 |
[26] |
Zhu, X.; Jiang, M.; Li, X.; Zhu, E.; Deng, Q.; Song, X.; Lv, J.; Yang, D. Org. Chem. Front. 2022, 9, 347.
doi: 10.1039/D1QO01570B |
[27] |
(a) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Nature 2019, 567, 223.
doi: 10.1038/s41586-019-0982-0 |
(b) Ritter, T.; Berger, F. Synlett 2021, 33, 339.
doi: 10.1055/s-0040-1706034 |
|
(c) Sang, R.; Korkis, S. E.; Su, W.; Ye, F.; Engl, P. S.; Berger, F.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 16161.
doi: 10.1002/anie.201908718 |
|
[28] |
Liang, L.; Niu, H. Y.; Li, R. L.; Wang, Y. F.; Yan, J. K.; Li, C. G.; Guo, H. M. Org. Lett. 2020, 22, 6842.
doi: 10.1021/acs.orglett.0c02364 pmid: 32810404 |
[29] |
Lu, Y.; Liu, Q.; Wang, Z.-X.; Chen, X.-Y. Angew. Chem., Int. Ed. 2022, 61, e202116071.
|
[30] |
Li, X.; Jiang, M.; Zhu, X.; Song, X.; Deng, Q.; Lv, J.; Yang, D. Org. Chem. Front. 2022, 9, 386.
doi: 10.1039/D1QO01548F |
[31] |
Aukland, M. H.; Šiaučiulis, M.; West, A.; Perry, G. J. P.; Procter, D. J. Nat. Catal. 2020, 3, 163.
doi: 10.1038/s41929-019-0415-3 |
[32] |
Mkrtchyan, S.; Iaroshenko, V. O. J. Org. Chem. 2021, 86, 4896.
doi: 10.1021/acs.joc.0c02294 |
[33] |
Sun, K.; Shi, A.; Liu, Y.; Chen, X.; Xiang, P.; Wang, X.; Qu, L.; Yu, B. Chem. Sci. 2022, 13, 5659.
doi: 10.1039/D2SC01241C |
[34] |
Wang, X.; Xun, X.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2022, 24, 4580.
doi: 10.1021/acs.orglett.2c01674 |
[35] |
Engl, P. S.; Haring, A. P.; Berger, F.; Berger, G.; Perez-Bitrian, A.; Ritter, T. J. Am. Chem. Soc. 2019, 141, 13346.
doi: 10.1021/jacs.9b07323 |
[36] |
Ye, F.; Berger, F.; Jia, H.; Ford, J.; Wortman, A.; Borgel, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 14615.
doi: 10.1002/anie.201906672 |
[37] |
Li, J.; Chen, J.; Sang, R.; Ham, W. S.; Plutschack, M. B.; Berger, F.; Chabbra, S.; Schnegg, A.; Genicot, C.; Ritter, T. Nat. Chem. 2020, 12, 56.
doi: 10.1038/s41557-019-0353-3 |
[38] |
Huang, C.; Feng, J.; Ma, R.; Fang, S.; Lu, T.; Tang, W.; Du, D.; Gao, J. Org. Lett. 2019, 21, 9688.
doi: 10.1021/acs.orglett.9b03850 pmid: 31755274 |
[39] |
Chen, C.; Wang, Z. J.; Lu, H.; Zhao, Y.; Shi, Z. Nat. Commun. 2021, 12, 4526.
doi: 10.1038/s41467-021-24716-2 |
[40] |
Tian, Z.-Y.; Zhang, C.-P. Org. Chem. Front. 2022, 9, 2220.
doi: 10.1039/D2QO00235C |
[41] |
Li, Q.; Huang, J.; Cao, Z.; Zhang, J.; Wu, J. Org. Chem. Front. 2022, 9, 3781.
doi: 10.1039/D2QO00768A |
[42] |
He, F.-S.; Bao, P.; Tang, Z.; Yu, F.; Deng, W.-P.; Wu, J. Org. Lett. 2022, 24, 2955.
doi: 10.1021/acs.orglett.2c01132 |
[43] |
Cui, W.; Li, X.; Guo, G.; Song, X.; Lv, J.; Yang, D. Org. Lett. 2022, 24, 5391.
doi: 10.1021/acs.orglett.2c02078 |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[5] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[6] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[7] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[8] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[9] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[10] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[11] | 刘静, 郝健, 沈其龙. 可见光促进的含色氨酸寡肽与YlideFluor试剂的直接三氟甲基化反应研究[J]. 有机化学, 2023, 43(4): 1517-1524. |
[12] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[13] | 杜昌远, 唐裕才, 段京林, 杨碧玉, 何宇鹏, 周谦, 刘学文. 可见光促进有机染料催化2-芳基吲哚自由基烷氧羰基化反应研究[J]. 有机化学, 2023, 43(12): 4268-4276. |
[14] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[15] | 汤娟, 胡家榆, 祝志强, 蒲守智. 可见光诱导有机膦促进脱氧官能化反应研究进展[J]. 有机化学, 2023, 43(12): 4036-4056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||