有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1326-1335.DOI: 10.6023/cjoc202112008 上一篇 下一篇
综述与进展
收稿日期:
2021-12-04
修回日期:
2021-12-31
发布日期:
2022-01-20
通讯作者:
徐信
基金资助:
Yiwen Guan, Kejian Chang, Qianlin Sun, Xin Xu()
Received:
2021-12-04
Revised:
2021-12-31
Published:
2022-01-20
Contact:
Xin Xu
Supported by:
文章分享
近年来, 利用稀土金属作为路易斯酸, 与主族路易斯碱组合的路易斯酸碱对得到了开发. 这类酸碱对组合通过路易斯酸与路易斯碱协同作用, 从而实现底物的活化, 展示了与传统稀土金属配合物不同的活化模式. 其可以与氢气反应, 断裂非极性的氢-氢键; 也能够与羰基类、重氮类及叠氮类等不饱和小分子反应, 得到一系列结构独特的稀土金属配合物. 同时这类路易斯酸碱对也可以用于催化极性烯烃聚合反应、二氧化碳硅氢化还原反应中, 展现出优异的催化性能. 综述了上述研究结果, 并对该领域的发展趋势和前景进行了展望.
管怡雯, 常克俭, 孙千林, 徐信. 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022, 42(5): 1326-1335.
Yiwen Guan, Kejian Chang, Qianlin Sun, Xin Xu. Progress in Rare-Earth Metal-Based Lewis Pair Chemistry[J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1326-1335.
[1] |
Qian, C.; Du, C. Organolanthanide Chemistry, Chemical Industry Press, Beijing, 2004 (in Chinese)
|
( 钱长涛, 杜灿屏, 稀土金属有机化学, 化学工业出版社, 北京, 2004.)
|
|
[2] |
Qian, C.; Wang, C.; Chen, Y. Acta Chim. Sinica 2014, 72, 883. (in Chinese)
doi: 10.6023/A14060434 |
(钱长涛, 王春红, 陈耀峰, 化学学报, 2014, 72, 883.)
doi: 10.6023/A14060434 |
|
[3] |
Nishiura, M.; Guo, F.; Hou, Z. Acc. Chem. Res. 2015, 48, 2209.
doi: 10.1021/acs.accounts.5b00219 |
[4] |
Xiao, Y.; Wang, Q.; Zhao, B.; Yao, Y. Chin. J. Org. Chem. 2015, 35, 1598. (in Chinese)
doi: 10.6023/cjoc201504024 |
(肖洋, 王千宇, 赵蓓, 姚英明, 有机化学, 2015, 35, 1598.)
doi: 10.6023/cjoc201504024 |
|
[5] |
Su, J.; Xu, X. J. Chin. Soc. Rare Earths 2021, 39, 171. (in Chinese)
|
(苏健洪, 徐信, 中国稀土学报, 2021, 39, 171.)
|
|
[6] |
Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephen, D. W. Science 2006, 314, 1124.
doi: 10.1126/science.1134230 |
[7] |
Welch, G. C.; Stephen, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
doi: 10.1021/ja067961j |
[8] |
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46.
doi: 10.1002/anie.200903708 |
[9] |
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400.
doi: 10.1002/anie.201409800 |
[10] |
Li, N.; Zhang, W.-X. Chin. J. Chem. 2020, 38, 1360.
doi: 10.1002/cjoc.202000027 |
[11] |
Tan, X.; Wang, H. Chin. J. Chem. 2021, 39, 1344.
doi: 10.1002/cjoc.202000570 |
[12] |
Stephan, D. W.; Erker, G. Chem. Sci. 2014, 5, 2625.
doi: 10.1039/C4SC00395K |
[13] |
Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191.
doi: 10.1021/acs.accounts.7b00530 |
[14] |
Meng, W.; Feng, X.; Du, H. Chin. J. Chem. 2020, 38, 625.
doi: 10.1002/cjoc.202000011 |
[15] |
Stephan, D. W. J. Am. Chem. Soc. 2021, 43, 20002.
|
[16] |
Mahdi, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 12418.
doi: 10.1002/anie.201307254 |
[17] |
Légaré, M. A.; Courtemanche, M. A.; Rochette, É.; Fontaine, F. G. Science 2015, 349, 513.
doi: 10.1126/science.aab3591 |
[18] |
Hong, M.; Chen, J.; Chen, E. Y.-X. Chem. Rev. 2018, 118, 10551.
doi: 10.1021/acs.chemrev.8b00352 |
[19] |
Zhao, W.; He, J.; Zhang, Y. Sci. Bull. 2019, 64, 1830.
doi: 10.1016/j.scib.2019.08.025 |
[20] |
Flynn, S. R.; Wass, D. F. ACS Catal. 2013, 3, 2574.
doi: 10.1021/cs400754w |
[21] |
Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc. 2011, 133, 8826.
doi: 10.1021/ja201989c pmid: 21548587 |
[22] |
Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc. 2011, 133, 18463.
doi: 10.1021/ja207936p pmid: 21958011 |
[23] |
Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2013, 135, 6465.
doi: 10.1021/ja3110076 |
[24] |
Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. Angew. Chem. Int. Ed. 2013, 52, 13629.
doi: 10.1002/anie.201307493 |
[25] |
Sgro, M. J.; Stephan, D. W. Chem. Commun. 2013, 49, 2610.
doi: 10.1039/c3cc38286a |
[26] |
Sgro, M. J.; Stephan, D. W. Angew. Chem. Int. Ed. 2012, 51, 11343.
doi: 10.1002/anie.201205741 |
[27] |
Kubas, G. J. Chem. Rev. 2007, 107, 4152.
doi: 10.1021/cr050197j |
[28] |
Guan, Y.; Lu, E.; Xu, X. J. Rare Earths 2021, 39, 1017.
doi: 10.1016/j.jre.2020.12.019 |
[29] |
Chang, K.; Dong, Y.; Xu, X. Chem. Commun. 2019, 55, 12777.
doi: 10.1039/C9CC06676D |
[30] |
Lappert, M. F.; Singh, A.; Smith, R. G. Inorg. Synth. 1990, 27, 164.
|
[31] |
Xu, P.; Yao, Y.; Xu, X. Chem. Eur. J. 2017, 23, 1263.
doi: 10.1002/chem.201605622 |
[32] |
Yao, T.; Xu, P.; Xu, X. Dalton Trans. 2019, 48, 7743.
doi: 10.1039/c9dt01035a pmid: 31066398 |
[33] |
Chang, K.; Xu, X. Dalton Trans. 2017, 46, 4514.
doi: 10.1039/C7DT00676D |
[34] |
Chang, K.; Wang, X.; Fan, Z.; Xu, X. Inorg. Chem. 2018, 57, 8568.
doi: 10.1021/acs.inorgchem.8b01292 |
[35] |
Du, J; Zhang, Y.; Huang, Z.; Zhou, S.; Fang, H.; Cui, P. Dalton Trans. 2020, 49, 12311.
doi: 10.1039/D0DT02708A |
[36] |
Sun, X.; Su, W.; Shi, K.; Xie, Z.; Zhu, C. Chem.-Eur. J. 2020, 26, 5354.
doi: 10.1002/chem.201905629 |
[37] |
Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. (in Chinese)
doi: 10.6023/cjoc202004030 |
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
doi: 10.6023/cjoc202004030 |
|
[38] |
Arnold, P. L.; Marr, I. A.; Zlatogorsky, S.; Bellabarba, R.; Tooze, R. P. Dalton Trans. 2014, 43, 34.
doi: 10.1039/c3dt52762j pmid: 24162511 |
[39] |
Arnold, P. L.; Kerr, R. W. F.; Weetman, C.; Docherty, S. R.; Rieb, J.; Cruickshank, F. L.; Wang, K.; Jandl, C.; McMullon, M. W.; Pöthig, A.; Kühn, F. E.; Smith, A. D. Chem. Sci. 2018, 9, 8035.
doi: 10.1039/c8sc03312a pmid: 30568765 |
[40] |
Pieper, M.; Lamm, J. H.; Neumann, B.; Stammler, H. G.; Mitzel, N. W. Dalton Trans. 2017, 46, 5326.
doi: 10.1039/C7DT00554G |
[41] |
Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Interscience, New York, 1998.
|
[42] |
Cai, B.; Xuan, J. Chin. J. Org. Chem. 2021, 41, 4565. (in Chinese)
doi: 10.6023/cjoc202109040 |
(蔡宝贵, 宣俊, 有机化学, 2021, 41, 4565.)
doi: 10.6023/cjoc202109040 |
|
[43] |
Yue, Q.; Gao, E.-Q. Coord. Chem. Rev. 2019, 382, 1.
doi: 10.1016/j.ccr.2018.12.002 |
[44] |
Dash, C.; Yousufuddin, M.; Cundari, T. R.; Dias, H. V. R. J. Am. Chem. Soc. 2013, 135, 15479.
doi: 10.1021/ja406027x |
[45] |
Turner, Z. R.; Bellabarba, R.; Tooze, R. P.; Arnold, P. L. J. Am. Chem. Soc. 2010, 132, 4050.
doi: 10.1021/ja910673q pmid: 20201572 |
[46] |
Dong, Y.; Chang, K.; Xu, X. Chin. J. Chem. 2020, 38, 559.
doi: 10.1002/cjoc.202000038 |
[47] |
Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479.
pmid: 11749273 |
[48] |
Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157.
doi: 10.1021/cr9000258 |
[49] |
Liu, B.; Qiao, K.; Fang, J.; Wang, T.; Wang, Z.; Liu, D.; Xie, Z.; Maron, L.; Cui, D. Angew. Chem. Int. Ed. 2018, 57, 14896.
doi: 10.1002/anie.201808836 pmid: 30232826 |
[50] |
Liu, D.; Wang, M.; Chai, Y.; Wan, X.; Cui, D. ACS Catal. 2019, 9, 2618.
doi: 10.1021/acscatal.9b00555 |
[51] |
Nishiura, M.; Hou, Z. Nat. Chem. 2010, 2, 257.
doi: 10.1038/nchem.595 |
[52] |
Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 4908.
doi: 10.1021/ja00038a069 |
[53] |
Yasuda, H. J. Organomet. Chem. 2002, 647, 128.
doi: 10.1016/S0022-328X(01)01357-2 |
[54] |
Zhang, Y.; Miyake, G. M.; Chen, E. Y. -X. Angew. Chem. Int. Ed. 2010, 49, 10158.
doi: 10.1002/anie.201005534 |
[55] |
Knaus, M. G. M.; Giuman, M. M.; Pöthig, A.; Rieger, B. J. Am. Chem. Soc. 2016, 138, 7776.
doi: 10.1021/jacs.6b04129 |
[56] |
Bai, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2018, 57, 17230.
doi: 10.1002/anie.201811946 |
[57] |
Wang, X, -J.; Hong, M. Angew. Chem. Int. Ed. 2020, 59, 2664.
doi: 10.1002/anie.201913136 |
[58] |
Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton. Trans. 2012, 41, 9119.
doi: 10.1039/c2dt30427a |
[59] |
Zhou, Y.; Jiang, S.; Xu, X. Chin. J. Chem. 2021, 39, 149.
doi: 10.1002/cjoc.202000441 |
[60] |
Xu, P.; Xu, X. ACS Catal. 2018, 8, 198.
doi: 10.1021/acscatal.7b02875 |
[61] |
Xu, P.; Wu, L.; Dong, L.; Xu, X. Molecules 2018, 23, 360.
doi: 10.3390/molecules23020360 |
[62] |
Zhao, Y.; Luo, G.; Xu, X.; Hou, Z.; Luo, Y. Inorg. Chem. Front. 2020, 7, 4600.
doi: 10.1039/D0QI01067G |
[63] |
Kennemur, J. G. Macromolecules 2019, 52, 1354.
doi: 10.1021/acs.macromol.8b01661 |
[64] |
Weger, M.; Giuman, M. M.; Knaus, M. G.; Ackermann, M.; Drees, M.; Hornung, J.; Altmann, P. J.; Fischer, R. A.; Rieger, B. Chem. Eur. J. 2018, 24, 14950.
doi: 10.1002/chem.201802075 |
[65] |
Scherpf, T.; Schwarz, C.; Scharf, L. T.; Zur, J.-A.; Helbig, A.; Gessner, V. H. Angew. Chem. Int. Ed. 2018, 57, 12859.
doi: 10.1002/anie.201805372 |
[66] |
Su, Y.; Zhao, Y.; Zhang, H.; Luo, Y.; Xu, X. Macromolecules 2021, 54, 7724.
doi: 10.1021/acs.macromol.1c01339 |
[67] |
Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.
|
[68] |
Süss-Fink, G.; Reiner, J. J. Organomet. Chem. 1981, 221, C36.
doi: 10.1016/S0022-328X(00)88383-7 |
[69] |
Chen, J.; McGraw, M.; Chen, E. Y. -X. ChemSusChem 2019, 12, 4543.
doi: 10.1002/cssc.201901764 |
[70] |
Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. Chem. Sci. 2013, 4, 2152.
doi: 10.1039/c3sc50145k |
[71] |
Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. J. Am. Chem. Soc. 2012, 134, 10843.
doi: 10.1021/ja300591v pmid: 22670831 |
[72] |
Chang, K.; Rosal, I.; Zheng, X.; Maron, L.; Xu, X. Dalton Trans. 2021, 50, 7804.
doi: 10.1039/D1DT01074C |
[73] |
Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.
doi: 10.1021/ja305318c |
[1] | 肖丽娟, 张艳平, 洪缪. 路易斯酸碱对在材料化学应用中的研究进展[J]. 有机化学, 2023, 43(3): 949-960. |
[2] | 侯金松, 杨高升. 三(邻二甲胺基苄基)钇催化脂肪胺对烯腈的插入串联反应[J]. 有机化学, 2022, 42(7): 2070-2078. |
[3] | 吴杰, 张秀丽, 张丽军, 韦芸, 周双六. 含氮原子桥联吡咯基稀土金属双核配合物的合成及催化e-己内酯的开环聚合反应[J]. 有机化学, 2020, 40(3): 801-805. |
[4] | 杜山山, 柴正祺, 胡静远, 张文雄, 席振峰. 含六磷杂并环[3.1.0]己烷四负离子的三核稀土镥配合物的分离与结构表征[J]. 有机化学, 2019, 39(8): 2338-2342. |
[5] | 王桥天, 韩彩芳, 冯向青, 杜海峰. 手性螺环骨架硼烷催化酮的不对称硅氢化反应[J]. 有机化学, 2019, 39(8): 2257-2263. |
[6] | 张震北, 孙伟, 曹治珊. “受阻路易斯酸碱对”活化小分子反应研究进展[J]. 有机化学, 2018, 38(6): 1292-1318. |
[7] | 赵宁. 手性金属有机化合物催化丙交酯聚合反应研究进展[J]. 有机化学, 2017, 37(5): 1139-1159. |
[8] | 王辉, 郑亿, 潘振涛, 傅鸿樑, 凌飞, 钟为慧. “受阻”路易斯酸碱对催化氢化反应的研究进展[J]. 有机化学, 2017, 37(2): 301-313. |
[9] | 肖洋, 王千宇, 赵蓓, 姚英明. 稀土金属胺化物催化C—N键的形成反应[J]. 有机化学, 2015, 35(8): 1598-1614. |
[10] | 郭巧霞,申宝剑. 第5/6副族高价过渡金属氯化物的有机反应[J]. 有机化学, 2005, 25(9): 1147-1155. |
[11] | 易文斌,蔡春. 全氟辛基磺酸稀土金属盐催化氟两相酯化反应[J]. 有机化学, 2005, 25(11): 1434-1436. |
[12] | 李祖义, 陈颖. 生物催化在高分子合成中的应用[J]. 有机化学, 2004, 24(9): 1029-1037. |
[13] | 何水样,陈军利,杨锐,武望亭,赵建社,史启祯,王汝贤. 水杨醛水杨酰腙及其稀土配合物的合成、波谱研究及生物活性[J]. 有机化学, 2003, 23(12): 1387-1392. |
[14] | 沈琪,姚英明. 茂基稀土胺化物的合成及其作为单组份引发剂引发极 性单体聚合的研究[J]. 有机化学, 2001, 21(11): 1018-1023. |
[15] | 林进,王昭煜,王宏根. 1-甲基-1-丙基-3-丁烯基环戊二烯基钆配合物的合成和晶体 结构分析[J]. 有机化学, 2000, 20(3): 377-381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||