有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3035-3054.DOI: 10.6023/cjoc202303013 上一篇 下一篇
综述与进展
徐伟a, 翟宏斌a,b,*(), 程斌a,*(), 汪太民a,*()
收稿日期:
2023-03-10
修回日期:
2023-05-23
发布日期:
2023-06-06
基金资助:
Wei Xua, Hongbin Zhaia,b(), Bin Chenga(), Taimin Wanga()
Received:
2023-03-10
Revised:
2023-05-23
Published:
2023-06-06
Contact:
E-mail: Supported by:
文章分享
Heck反应作为构建C—C键最为强大和实用的合成工具之一, 经过数十年的发展已逐渐趋于成熟, 并在各种功能分子的合成中获得了极为广泛的应用. 近年来, 随着光催化的兴起, 可见光诱导的钯催化Heck反应也随之快速发展起来. 作为一种新颖的C—C键构建策略, 可见光诱导的Heck反应极大地扩展了底物的适用范围, 包括亲核试剂和亲电试剂. 同时, 这种由激发态钯络合物引发, 机理上涉及杂化的自由基-PdⅠ物种的特殊反应路径也使得可见光诱导的钯催化Heck反应表现出条件温和、官能团兼容性好以及转化多样性等特点, 是对经典Heck反应的极大补充, 在功能分子的合成以及复杂化合物的后期修饰等方面极具应用潜力. 根据反应亲核/亲电试剂种类, 以及串联反应类型, 对可见光诱导的Heck反应进行归类和总结, 并对部分反应机理进行了简要阐述.
徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054.
Wei Xu, Hongbin Zhai, Bin Cheng, Taimin Wang. Visible Light-Induced Pd-Catalyzed Heck Reactions[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3035-3054.
[1] |
Beletskaya I. P.; Cheprakov A. V. Chem. Rev. 2000, 100, 3009.
pmid: 11749313 |
[2] |
(a) Heck R. F. J. Am. Chem. Soc. 1968, 90, 5518.
doi: 10.1021/ja01022a034 pmid: 12914487 |
(b) Heck R. F. Acc. Chem. Res. 1979, 12, 146.
doi: 10.1021/ar50136a006 pmid: 12914487 |
|
(c) Cabri W.; Candiani I. Acc. Chem. Res. 1995, 28, 2.
doi: 10.1021/ar00049a001 pmid: 12914487 |
|
(d) Shibasaki M.; Boden C. D. J.; Kojima A. Tetrahedron 1997, 53, 7371.
doi: 10.1016/S0040-4020(97)00437-7 pmid: 12914487 |
|
(e) T. Crisp G. Chem. Soc. Rev. 1998, 27, 427.
doi: 10.1039/a827427z pmid: 12914487 |
|
(f) Dounay A. B.; Overman L. E. Chem. Rev. 2003, 103, 2945.
pmid: 12914487 |
|
(g) Xie J. Q.; Liang R. X.; Jia Y. X. Chin. J. Chem. 2021, 39, 710.
doi: 10.1002/cjoc.v39.3 pmid: 12914487 |
|
(h) Jia Y.; Zhou P.; Cao Z.; Liang R.; Zhou B. Acta Chim. Sinica 2021, 79, 176. (in Chinese)
doi: 10.6023/A20110520 pmid: 12914487 |
|
(周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176.)
doi: 10.6023/A20110520 pmid: 12914487 |
|
(i) Li Y.; Hao M.; Chang Y. C.; Liu Y.; Wang W. F.; Sun N.; Zhu W. Q.; Gao Z. Chin. J. Chem. 2021, 39, 2962.
doi: 10.1002/cjoc.v39.11 pmid: 12914487 |
|
[3] |
Parasram M.; Chuentragool P.; Sarkar D.; Gevorgyan V. J. Am. Chem. Soc. 2016, 138, 6340.
doi: 10.1021/jacs.6b01628 pmid: 27149524 |
[4] |
(a) Chuentragool P.; Parasram M.; Shi Y.; Gevorgyan V. J. Am. Chem. Soc. 2018, 140, 2465.
doi: 10.1021/jacs.8b00488 pmid: 32155303 |
(b) Ratushnyy M.; Parasram M.; Wang Y.; Gevorgyan V. Angew. Chem. Int. Ed. 2018, 57, 2712.
doi: 10.1002/anie.201712775 pmid: 32155303 |
|
(c) Ratushnyy M.; Kvasovs N.; Sarkar S.; Gevorgyan V. Angew. Chem. Int. Ed. 2020, 59, 10316.
doi: 10.1002/anie.201915962 pmid: 32155303 |
|
[5] |
(a) Liu Q.; Dong X.; Li J.; Xiao J.; Dong Y. H.; Liu H. ACS Catal. 2015, 5, 6111.
doi: 10.1021/acscatal.5b01469 pmid: 30600875 |
(b) Zhou W. J.; Zhang Y. H.; Cao G. M.; Liu H. D.; Yu D. G. Chin. J. Org. Chem. 2017, 37, 1322. (in Chinese)
doi: 10.6023/cjoc201702051 pmid: 30600875 |
|
(周文俊, 张逸寒, 曹光梅, 刘惠东, 余达刚, 有机化学, 2017, 37, 1322.)
doi: 10.6023/cjoc201702051 pmid: 30600875 |
|
(c) Chuentragool P.; Kurandina D.; Gevorgyan V. Angew. Chem. Int. Ed. 2019, 58, 11586.
doi: 10.1002/anie.201813523 pmid: 30600875 |
|
(d) Kancherla R.; Muralirajan K.; Sagadevan A.; Rueping M. Trends Chem. 2019, 1, 510.
doi: 10.1016/j.trechm.2019.03.012 pmid: 30600875 |
|
(e) Kurandina D.; Chuentragool P.; Gevorgyan V. Synthesis 2019, 51, 985.
doi: 10.1055/s-0037-1611659 pmid: 30600875 |
|
(f) Zhou W. J.; Cao G. M.; Zhang Z. P.; Yu D. G. Chem. Lett. 2019, 48, 181.
doi: 10.1246/cl.190006 pmid: 30600875 |
|
(g) Cheng W. M.; Shang R. ACS Catal. 2020, 10, 9170.
doi: 10.1021/acscatal.0c01979 pmid: 30600875 |
|
(h) Cheung K. P. S.; Sarkar S.; Gevorgyan V. Chem. Rev. 2022, 122, 1543.
doi: 10.1021/acs.chemrev.1c00403 pmid: 30600875 |
|
[6] |
Kurandina D.; Parasram M.; Gevorgyan V. Angew. Chem. Int. Ed. 2017, 56, 14212.
doi: 10.1002/anie.201706554 pmid: 28941019 |
[7] |
Wang G. Z.; Shang R.; Cheng W. M.; Fu Y. J. Am. Chem. Soc. 2017, 139, 18307.
doi: 10.1021/jacs.7b10009 |
[8] |
Oku N.; Murakami M.; Miura T. Org. Lett. 2022, 24, 1616.
doi: 10.1021/acs.orglett.2c00121 |
[9] |
Kurandina D.; Rivas M.; Radzhabov M.; Gevorgyan V. Org. Lett. 2018, 20, 357.
doi: 10.1021/acs.orglett.7b03591 pmid: 29303271 |
[10] |
Adamik R.; Foldesi T.; Novak Z. Org. Lett. 2020, 22, 8091.
doi: 10.1021/acs.orglett.0c03043 |
[11] |
Li M.; Qiu Y. F.; Wang C. T.; Li X. S.; Wei W. X.; Wang Y. Z.; Bao Q. F.; Ding Y. N.; Shi W. Y.; Liang Y. M. Org. Lett. 2020, 22, 6288.
doi: 10.1021/acs.orglett.0c02053 |
[12] |
Yao W.; Zhao G.; Wu Y.; Zhou L.; Mukherjee U.; Liu P.; Ngai M. Y. J. Am. Chem. Soc. 2022, 144, 3353.
doi: 10.1021/jacs.1c13299 |
[13] |
Zhao G. Y.; Mukherjee U.; Zhou L.; Wu Y.; Yao W.; Mauro J. N.; Liu P.; Ngai M. Y. Chem. Sci. 2022, 13, 6276.
doi: 10.1039/D2SC01042A |
[14] |
Lee G. S.; Kim D.; Hong S. H. Nat. Commun. 2021, 12, 991.
doi: 10.1038/s41467-021-21270-9 |
[15] |
(a) Isse A. A.; Lin C. Y.; Coote M. L.; Gennaro A. J. Phys. Chem. B 2011, 115, 678.
doi: 10.1021/jp109613t pmid: 26030520 |
(b) Pratsch G.; Lackner G. L.; Overman L. E. J. Org. Chem. 2015, 80, 6025.
doi: 10.1021/acs.joc.5b00795 pmid: 26030520 |
|
[16] |
Wang G. Z.; Shang R.; Fu Y. Org. Lett. 2018, 20, 888.
doi: 10.1021/acs.orglett.8b00023 |
[17] |
Koy M.; Sandfort F.; Tlahuext-Aca A.; Quach L.; Daniliuc C. G.; Glorius F. Chem. Eur. J. 2018, 24, 4552.
doi: 10.1002/chem.v24.18 |
[18] |
Xing W. L.; Shang R.; Wang G. Z.; Fu Y. Chem. Commun. 2019, 55, 14291.
doi: 10.1039/C9CC08077E |
[19] |
Zhang Z.; Kvasovs N.; Dubrovina A.; Gevorgyan V. Angew. Chem. Int. Ed. 2022, 61, e202110924.
doi: 10.1002/anie.v61.1 |
[20] |
Zhang Z.; Gevorgyan V. J. Am. Chem. Soc. 2022, 144, 20875.
doi: 10.1021/jacs.2c09045 |
[21] |
Zhao B.; Shang R.; Wang G.-Z.; Wang S.; Chen H.; Fu Y. ACS Catal. 2019, 10, 1334.
doi: 10.1021/acscatal.9b04699 |
[22] |
Kvasovs N.; Iziumchenko V.; Palchykov V.; Gevorgyan V. ACS Catal. 2021, 11, 3749.
doi: 10.1021/acscatal.1c00267 pmid: 34422448 |
[23] |
Kvasovs N.; Gevorgyan V. Org. Lett. 2022, 24, 4176.
doi: 10.1021/acs.orglett.2c01409 pmid: 35653178 |
[24] |
Chuentragool P.; Yadagiri D.; Morita T.; Sarkar S.; Parasram M.; Wang Y.; Gevorgyan V. Angew. Chem. Int. Ed. 2019, 58, 1794.
doi: 10.1002/anie.201812398 pmid: 30462879 |
[25] |
Du Y. J.; Sheng X. X.; Li J. H.; Chen J. M.; Yang S.; Chen M. Chem. Sci. 2023, 14, 3580.
doi: 10.1039/D2SC06852D |
[26] |
Huang H.-M.; Koy M.; Serrano E.; Pflüger P. M.; Schwarz J. L.; Glorius F. Nat. Catal. 2020, 3, 393.
doi: 10.1038/s41929-020-0434-0 |
[27] |
Huang H. M.; Bellotti P.; Pfluger P. M.; Schwarz J. L.; Heidrich B.; Glorius F. J. Am. Chem. Soc. 2020, 142, 10173.
doi: 10.1021/jacs.0c03239 pmid: 32379432 |
[28] |
Shing Cheung K. P.; Kurandina D.; Yata T.; Gevorgyan V. J. Am. Chem. Soc. 2020, 142, 9932.
doi: 10.1021/jacs.0c03993 |
[29] |
Liu Z. L.; Ye Z. P.; Chen Y. X.; Zheng Y.; Xie Z. Z.; Guan J. P.; Xiao J. A.; Chen K.; Xiang H. Y.; Yang H. Org. Lett. 2022, 24, 924.
doi: 10.1021/acs.orglett.1c04293 |
[30] |
Huang H.-M.; Bellotti P.; Kim S.; Zhang X.; Glorius F. Nat. Synth. 2022, 1, 464.
doi: 10.1038/s44160-022-00085-6 |
[31] |
Bellotti P.; Koy M.; Gutheil C.; Heuvel S.; Glorius F. Chem. Sci. 2020, 12, 1810.
doi: 10.1039/d0sc05551d pmid: 34163944 |
[32] |
Sun L.; Ye J. H.; Zhou W. J.; Zeng X.; Yu D. G. Org. Lett. 2018, 20, 3049.
doi: 10.1021/acs.orglett.8b01079 |
[33] |
Sun S.; Zhou C.; Yu J. T.; Cheng J. Org. Lett. 2019, 21, 6579.
doi: 10.1021/acs.orglett.9b02700 |
[34] |
Chen L.; Guo L. N.; Liu S.; Liu L.; Duan X. H. Chem. Sci. 2020, 12, 1791.
doi: 10.1039/d0sc04399k pmid: 34163941 |
[35] |
Koy M.; Bellotti P.; Katzenburg F.; Daniliuc C. G.; Glorius F. Angew. Chem. Int. Ed. 2020, 59, 2375.
doi: 10.1002/anie.v59.6 |
[36] |
Feng L.; Guo L.; Yang C.; Zhou J.; Xia W. Org. Lett. 2020, 22, 3964.
doi: 10.1021/acs.orglett.0c01267 |
[37] |
Du J.; Wang X.; Wang H.; Wei J.; Huang X.; Song J.; Zhang J. Org. Lett. 2021, 23, 5631.
doi: 10.1021/acs.orglett.1c01698 |
[38] |
Muralirajan K.; Kancherla R.; Gimnkhan A.; Rueping M. Org. Lett. 2021, 23, 6905.
doi: 10.1021/acs.orglett.1c02467 |
[39] |
Chen S.; Van Meervelt L.; Van der Eycken E. V.; Sharma U. K. Org. Lett. 2022, 24, 1213.
doi: 10.1021/acs.orglett.1c04390 pmid: 35107015 |
[40] |
Renzi P.; Azzi E.; Bessone E.; Ghigo G.; Parisotto S.; Pellegrino F.; Deagostino A. Org. Chem. Front. 2022, 9, 906.
doi: 10.1039/D1QO01631H |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[4] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[5] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[6] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[7] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[8] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[9] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[10] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[11] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[12] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[13] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[14] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[15] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||