有机化学 ›› 2023, Vol. 43 ›› Issue (4): 1566-1573.DOI: 10.6023/cjoc202208035 上一篇 下一篇
研究论文
梁陆祺, 奚娟, 姜若楠, 杨艺, 孙丰钢, 张立志*(), 李新进, 刘会*()
收稿日期:
2022-08-25
修回日期:
2022-10-06
发布日期:
2022-11-15
通讯作者:
张立志, 刘会
基金资助:
Luqi Liang, Juan Xi, Ruonan Jiang, Yi Yang, Fenggang Sun, Lizhi Zhang(), Xinjin Li, Hui Liu()
Received:
2022-08-25
Revised:
2022-10-06
Published:
2022-11-15
Contact:
Lizhi Zhang, Hui Liu
Supported by:
文章分享
利用简单易得的硫酯作为硫源, 并且没有使用有毒的一氧化碳气体和硫醇, 实现了硫酯与芳基碘的镍催化官能团交换反应. 这种转移反应涉及与Ni(0)的两个氧化加成: 芳族酯的C—S键和卤代芳烃的C—I键, 两个生成的中间体经过官能团交换反应得到新的硫酯. 此外, 该方法条件温和, 操作简单, 为硫酯的合成提供了一条实用的途径.
梁陆祺, 奚娟, 姜若楠, 杨艺, 孙丰钢, 张立志, 李新进, 刘会. 镍催化硫酯转移反应合成芳基硫酯[J]. 有机化学, 2023, 43(4): 1566-1573.
Luqi Liang, Juan Xi, Ruonan Jiang, Yi Yang, Fenggang Sun, Lizhi Zhang, Xinjin Li, Hui Liu. Ni-Catalyzed Aryl Thioester Synthesis via Thioester Transfer Reaction[J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1566-1573.
Entry | Ni catalyst | Ligand | Solvent | Yielda/% |
---|---|---|---|---|
1 | NiBr2(PPh3)2 | L1 | Dioxane | NR |
2 | NiBr2(PPh3)2 | L1 | MeCN | NR |
3 | NiBr2(PPh3)2 | L1 | NMP | 44 |
4 | NiBr2(PPh3)2 | L1 | DMSO | 56 |
5 | NiBr2(PPh3)2 | L1 | DMF | 25 |
6 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 77 |
7 | NiBr2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 61 |
8 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 68 |
9 | NiCl2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 69 |
10 | NiBr2(PPh3)2 | L2 | NMP/DMSO (V∶V=1∶1) | 26 |
11 | NiBr2(PPh3)2 | L3 | NMP/DMSO (V∶V=1∶1) | 59 |
12 | NiBr2(PPh3)2 | L4 | NMP/DMSO (V∶V=1∶1) | 66 |
13 | NiBr2(PPh3)2 | DPPE | NMP/DMSO (V∶V=1∶1) | NR |
14 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 34b |
Entry | Ni catalyst | Ligand | Solvent | Yielda/% |
---|---|---|---|---|
1 | NiBr2(PPh3)2 | L1 | Dioxane | NR |
2 | NiBr2(PPh3)2 | L1 | MeCN | NR |
3 | NiBr2(PPh3)2 | L1 | NMP | 44 |
4 | NiBr2(PPh3)2 | L1 | DMSO | 56 |
5 | NiBr2(PPh3)2 | L1 | DMF | 25 |
6 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 77 |
7 | NiBr2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 61 |
8 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 68 |
9 | NiCl2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 69 |
10 | NiBr2(PPh3)2 | L2 | NMP/DMSO (V∶V=1∶1) | 26 |
11 | NiBr2(PPh3)2 | L3 | NMP/DMSO (V∶V=1∶1) | 59 |
12 | NiBr2(PPh3)2 | L4 | NMP/DMSO (V∶V=1∶1) | 66 |
13 | NiBr2(PPh3)2 | DPPE | NMP/DMSO (V∶V=1∶1) | NR |
14 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 34b |
[1] |
(a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
doi: 10.1021/ja005613q pmid: 18367231 |
(b) Tokuyama, H.; Yokoshima, S.; Lin, S. C.; Li, L. P.; Fukuyama, T. Synthesis 2002, 1121.
pmid: 18367231 |
|
(c) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
doi: 10.1039/c3cs60041f pmid: 18367231 |
|
(d) Dénès, F.; Schiesser, C. H.; Renaud, P. ; Chem. Soc. Rev. 2013, 42, 7900.
doi: 10.1039/c3cs60143a pmid: 18367231 |
|
(e) Smietana, M.; Clayette, P.; Mialocq, P.; Vasseur, J.; Oiry, J. Bioorg. Chem. 2008, 36, 133.
doi: 10.1016/j.bioorg.2008.02.001 pmid: 18367231 |
|
(f) Kumar, K. S. A.; Spasser, L.; Moyal, T.; Ohayon, S.; Brik, A. Angew. Chem., Int. Ed. 2011, 50, 6137.
doi: 10.1002/anie.v50.27 pmid: 18367231 |
|
[2] |
Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons, New Jersey, 2007.
|
[3] |
(a) Kazemi, M.; Shiri, L. J. Sulfur Chem. 2015, 36, 613.
doi: 10.1080/17415993.2015.1075023 |
(b) Zheng, T. C.; Burkart, M.; Richardson, D. E. Tetrahedron Lett. 1999, 40, 603.
doi: 10.1016/S0040-4039(98)02545-3 |
|
(c) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. 1978, 17, 522.
doi: 10.1002/(ISSN)1521-3773 |
|
(d) Zeiler, E.; Korotkov, V. S.; Lorenz-Baath, K.; Böttcher, T.; Sieber, S. A. Med. Chem. 2012, 20, 583.
doi: 10.1021/jm00214a027 |
|
[4] |
(a) Xiao, W. J.; Alper, H. J. Org. Chem. 1997, 62, 3422.
doi: 10.1021/jo970126n pmid: 11559167 |
(b) Xiao, W. J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1998, 63, 2609.
doi: 10.1021/jo972121w pmid: 11559167 |
|
(c) Xiao, W. J.; Alper, H. J. Org. Chem. 1998, 63, 7939.
doi: 10.1021/jo9812328 pmid: 11559167 |
|
(d) Xiao, W. J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1999, 64, 2080.
doi: 10.1021/jo9824246 pmid: 11559167 |
|
(e) Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646.
doi: 10.1021/jo9913098 pmid: 11559167 |
|
(f) Xiao, W. J.; Vasapollo, G.; Alper, H. J. Org. Chem. 2000, 65, 4138.
pmid: 11559167 |
|
(g) Xiao, W. J.; Alper, H. J. Org. Chem. 2001, 66, 6229.
pmid: 11559167 |
|
(h) Xiao, W. J.; Alper, H. J. Org. Chem. 2005, 70, 1802.
doi: 10.1021/jo047938l pmid: 11559167 |
|
(i) Cao, H.; Xiao, W. J.; Alper, H. Adv. Synth. Catal. 2006, 348, 1807.
doi: 10.1002/(ISSN)1615-4169 pmid: 11559167 |
|
(j) Li, C. F.; Xiao, W. J.; Alper, H. J. Org. Chem. 2009, 74, 888.
doi: 10.1021/jo801725j pmid: 11559167 |
|
(k) Zeng, F.; Alper, H. Org. Lett. 2011, 13, 2868.
doi: 10.1021/ol200880m pmid: 11559167 |
|
[5] |
(a) Hu, Y. H.; Liu, J.; Lu, Z. X.; Luo, X. C.; Zhang, H.; Lan, Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 3153.
doi: 10.1021/ja909962f pmid: 23383647 |
(b) Islam, S. M.; Molla, R. A.; Roy, A. S.; Ghosh, K. RSC Adv. 2014, 4, 26181.
doi: 10.1039/C4RA03338H pmid: 23383647 |
|
(c) Fukuoka, S. Ind. Eng. Chem. Res. 2016, 55, 4830.
doi: 10.1021/acs.iecr.6b00606 pmid: 23383647 |
|
(d) Martinelli, D. A.; Freckmann, M. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102.
doi: 10.1021/jo801279r pmid: 23383647 |
|
(e) Burhardt, M. N.; Taaning, R. H.; Skrydstrup, T. Org. Lett. 2013, 15, 948.
doi: 10.1021/ol400138m pmid: 23383647 |
|
(f) Torres, G. M.; Liu, Y.; Arndtsen, A. Science 2020, 368, 318.
doi: 10.1126/science.aba5901 pmid: 23383647 |
|
(g) Ai, H. J.; Rabeah, J.; Brückner, A.; Wu, X. F. Chem. Commun. 2021, 57, 1466.
doi: 10.1039/D0CC07578G pmid: 23383647 |
|
[6] |
(a) Li, Y.; Bao, G.; Wu, X. F. Chem. Sci. 2020, 11, 2187.
doi: 10.1039/C9SC05532K |
(b) Tian, Q. Q.; Sun, R. J.; Li, Y. H. Org. Biomol. Chem. 2022, 20, 1186.
doi: 10.1039/D2OB00008C |
|
[7] |
Kim, M.; Yu, S.; Kim, J. G.; Lee, S. Org. Chem. Front. 2018, 5, 2447.
doi: 10.1039/C8QO00466H |
[8] |
For reviews, See: (a) Morimoto, T.; Kakiuchi,, K. 2004, 43, 5580.
|
(b) Konishi, H.; Manabe, K. Synlett 2014, 25, 1971.
doi: 10.1055/s-00000083 |
|
For selected examples, see.
|
|
(c) Ueda, T.; Konishi, H.; Manabe, K. Org. Lett. 2012, 14, 3100.
doi: 10.1021/ol301192s |
|
(d) Park, H. S.; Kim, D. S.; Jun, C. H. ACS Catal. 2015, 5, 397.
doi: 10.1021/cs501778q |
|
[9] |
For reviews on a functional group transfer reaction, see: (a) Bhawal, B. N.; Morandi,, B. Angew. Chem., Int. Ed. 2019, 58, 10074.
doi: 10.1002/anie.v58.30 pmid: 29215288 |
(b) Boehm, P.; Morandi, B. Chimia 2020, 74, 724.
doi: 10.2533/chimia.2020.724 pmid: 29215288 |
|
Conceptually similar transfer reactions were also known.
pmid: 29215288 |
|
(c) Jun, C. H.; Lee, H. J. Am. Chem. Soc. 1999, 121, 880.
doi: 10.1021/ja983197s pmid: 29215288 |
|
(d) Arisawa, M.; Igarashi, Y.; Kobayashi, H.; Yamada, T.; Bando, K.; Ichikawa, T.; Yamaguchi, M. Tetrahedron 2011, 67, 7846.
doi: 10.1016/j.tet.2011.07.031 pmid: 29215288 |
|
(e) Murphy, S. K.; Park, J. W.; Bhawal, B. N.; Morandi, B. Chem.-Eur. J. 2017, 23, 12004.
doi: 10.1002/chem.201605325 pmid: 29215288 |
|
(f) Cruz, F. A.; Dong, V. M. Science 2015, 347, 56.
doi: 10.1126/science.1261232 pmid: 29215288 |
|
(g) Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832.
doi: 10.1126/science.aae0427 pmid: 29215288 |
|
(f) Fan, C.; Lv, X. Y.; Xiao, L. J.; Xie, J. H.; Zhou, Q. L. J. Am. Chem. Soc. 2019, 141, 2889.
doi: 10.1021/jacs.8b13251 pmid: 29215288 |
|
(h) Kanda, T.; Naraoka, A.; Naka, H. J. Am. Chem. Soc. 2019, 141, 825.
doi: 10.1021/jacs.8b12877 pmid: 29215288 |
|
(i) Isshiki, R.; Kurosawa, M. B.; Muto, K.; Yamaguchi, J. J. Am. Chem. Soc. 2021, 143, 10333.
doi: 10.1021/jacs.1c04215 pmid: 29215288 |
|
(j) Cao, H.; Liu, X.; Bie, F.; Shi, Y.; Han, Y.; Yan, P.; Szostak, M.; Liu, C. J. Org. Chem. 2021, 86, 10829.
doi: 10.1021/acs.joc.1c01117 pmid: 29215288 |
|
(k) Ichiishi, N.; Malapit, C. A.; Woźniak, L.; Sanford, M. S. Org. Lett. 2018, 20, 44.
doi: 10.1021/acs.orglett.7b03305 pmid: 29215288 |
|
(l) Kang, B.; Hong, S. H. Chem. Sci. 2017, 8, 6613.
doi: 10.1039/C7SC02516E pmid: 29215288 |
|
(m) Liu, C.; Szostak, M. Chem. Commun. 2018, 54, 2130.
doi: 10.1039/C8CC00271A pmid: 29215288 |
|
[10] |
(a) Lee, Y. H.; Morandi, B. Nat. Chem. 2018, 10, 1016.
doi: 10.1038/s41557-018-0078-8 |
(b) De La Higuera Macias, M.; Arndtsen, B. A. J. Am. Chem. Soc. 2018, 140, 10140.
doi: 10.1021/jacs.8b06605 |
|
[11] |
Isshiki, R.; Inayama, N.; Muto, K.. Yamaguchi, J. ACS Catal. 2020, 10, 3490.
|
[12] |
Wu, X.; Li, J.; Xia, S.; Zhu, C.; Xie, J. J. Org. Chem. 2022, 87, 10003.
doi: 10.1021/acs.joc.2c00979 |
[13] |
(a) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205.
doi: 10.1021/ja981428p pmid: 19453106 |
(b) Alvaro, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858.
doi: 10.1021/ja901793w pmid: 19453106 |
|
[14] |
Feng, Y. X.; Yang, S.; Zhao, S.; Zhang, D. P.; Li, X. J.; Liu, H.; Dong, Y. H.; Sun, F. G. Org. Lett. 2020, 22, 6734.
doi: 10.1021/acs.orglett.0c02091 |
[15] |
Burhardt, M. N.; Taaning, R. H.; Skrydstrup, T. Org. Lett. 2013, 15, 948.
doi: 10.1021/ol400138m pmid: 23383647 |
[16] |
Xie, S.; Su, L.; Mo, M.; Zhou, W.; Zhou, Y.; Dong, J. J. Org. Chem. 2021, 86, 739.
doi: 10.1021/acs.joc.0c02328 |
[17] |
Chou, Y. L.; Jhong, Y.; Swain, S. P.; Hou, D. R. J. Org. Chem. 2017, 82, 10201.
doi: 10.1021/acs.joc.7b01705 |
[18] |
Chung, J.; Seo, U. R.; Chun, S.; Chung, Y. K. ChemCatChem 2016, 8, 318.
doi: 10.1002/cctc.201501140 |
[19] |
Burhart, M. N.; Ahlburg, A.; Skrydstrup, T. J. Org. Chem. 2014, 79, 11830.
doi: 10.1021/jo5009965 |
[20] |
Sigh, P.; Peddinti, R. K. Tetrahedron Lett. 2017, 58, 1875.
|
[21] |
Gopinath, P.; Vidyarini, R. S.; Chandrasekaran, S. Eur. J. Org. Chem. 2009, 2009, 6043.
|
[22] |
Ali, W.; Guin, S.; Rout, S. K.; Gogoi, A.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 3099.
doi: 10.1002/adsc.201400360 |
[1] | 石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505. |
[2] | 张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035. |
[3] | 黄嘉为, 李潇漫, 徐亮, 韦玉. α-酮酸与硫酚的电化学脱羧偶联: 一种合成硫代酸酯的新方法[J]. 有机化学, 2023, 43(2): 756-762. |
[4] | 吴利城, 伍贤青, 曲景平, 陈宜峰. Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用[J]. 有机化学, 2023, 43(12): 4239-4250. |
[5] | 齐云鹏, 林登凯, 陈良安. 酰基镍作为关键中间体参与的酰基还原制备酮的研究进展[J]. 有机化学, 2023, 43(11): 3861-3875. |
[6] | 张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643. |
[7] | 孙奇, 孙泽颖, 俞泽, 王光伟. 镍催化炔烃的立体选择性芳基-二氟烷基化反应[J]. 有机化学, 2022, 42(8): 2515-2520. |
[8] | 余卫国, 王灵娜, 俞晓聪, 罗书平. 荧光染料和镍协同催化的脱羧羰基化反应[J]. 有机化学, 2022, 42(4): 1216-1223. |
[9] | 张玉荣, 王晗, 茆勇军, 施世良. 镍催化丁二烯、亚胺和烯基硼酸的三组分偶联反应[J]. 有机化学, 2022, 42(4): 1198-1209. |
[10] | 平媛媛, 宋海霞, 孔望清. 镍催化烯烃的不对称还原双官能团化反应研究进展[J]. 有机化学, 2022, 42(10): 3302-3321. |
[11] | 徐磊, 王方, 陈凡, 朱圣卿, 储玲玲. 可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展[J]. 有机化学, 2022, 42(1): 1-15. |
[12] | 张雷, 杨晨, 郭雪峰, 莫凡洋. Suzuki-Miyaura偶联反应机理研究进展[J]. 有机化学, 2021, 41(9): 3492-3510. |
[13] | 李雨青, 施世良. 镍催化的丁二烯、醛、炔和氢氯二茂锆的多组分偶联反应合成1,4-二烯[J]. 有机化学, 2021, 41(5): 1939-1948. |
[14] | 孙雨人, 刘建东, 林泉, 姚建, 童玮琦, 钱群. 镍催化的卤代糖苷和卤代芳烃通过还原偶联制备芳香碳糖苷类化合物的简易方法[J]. 有机化学, 2021, 41(4): 1551-1562. |
[15] | 吴良, 魏瀚林, 陈建中, 张万斌. 镍催化醇衍生物构筑碳-碳键的偶联反应研究进展[J]. 有机化学, 2021, 41(11): 4208-4239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||