有机化学 ›› 2023, Vol. 43 ›› Issue (3): 1023-1035.DOI: 10.6023/cjoc202211032 上一篇 下一篇
所属专题: 中国女科学家专辑
综述与进展
收稿日期:
2022-11-27
修回日期:
2023-01-02
发布日期:
2023-01-11
通讯作者:
朱圣卿, 储玲玲
基金资助:
Yanyan Zhang, Zhuzhu Zhang, Shengqing Zhu(), Lingling Chu()
Received:
2022-11-27
Revised:
2023-01-02
Published:
2023-01-11
Contact:
Shengqing Zhu, Lingling Chu
Supported by:
文章分享
α-手性羰基化合物是天然产物和药物中的重要结构单元, 也是反应性最为丰富的重要合成中间体. 过渡金属催化不对称酰基化反应是构建该重要结构单元的高效方法之一, 近些年来, 具有独特催化活性的丰产金属镍催化剂也被广泛应用于不对称羰基化合物的合成. 综述了近些年来镍催化不对称酰基化反应领域的新研究进展, 主要包括镍催化不对称烷基-酰基偶联反应、烯烃不对称氢酰基化反应以及烯烃不对称酰基官能团化反应等.
张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035.
Yanyan Zhang, Zhuzhu Zhang, Shengqing Zhu, Lingling Chu. Recent Advances in Nickel Catalyzed Asymmetric Acylation Reactions[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1023-1035.
[1] |
(a) Harrington, P. J.; Lodewijk, E. Org. Process Res. Dev. 1997, 1, 72.
doi: 10.1021/op960009e pmid: 19821577 |
(b) Foley, K. F.; Cozzi, N. V. Drug Dev. Res. 2003, 60, 252.
doi: 10.1002/(ISSN)1098-2299 pmid: 19821577 |
|
(c) Carroll, F. I.; Blough, B. E.; Abraham, P.; Mills, A. C.; Holleman, J. A.; Wolckenhauer, S. A.; Decker, A. M.; Landavazo, A.; McElroy, K. T.; Navarro, H. A.; Gatch, M. B.; Forster, M. J. J. Med. Chem. 2009, 52, 6768.
doi: 10.1021/jm901189z pmid: 19821577 |
|
[2] |
(a) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082.
doi: 10.1021/cr9000836 pmid: 24555548 |
(b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.
doi: 10.1002/anie.200903424 pmid: 24555548 |
|
(c) Pitts, C. R.; Lectka, T. Chem. Rev. 2014, 114, 7930.
doi: 10.1021/cr4005549 pmid: 24555548 |
|
(d) Wang, P.; Yang, D.; Liu, H. Chin. J. Org. Chem. 2021, 41, 3448. (in Chinese)
doi: 10.6023/cjoc202104060 pmid: 24555548 |
|
(王鹏, 杨妲, 刘欢, 有机化学, 2021, 41, 3448.)
doi: 10.6023/cjoc202104060 pmid: 24555548 |
|
[3] |
(a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
doi: 10.1021/ar0201106 pmid: 28649462 |
(b) MacMillan, D. W. C.; Watson, A. J. B. Inα-Functionalization of Carbonyl Compounds, StereoselectiveSynthesis 3,1st ed.ed., Vol. 3, Georg Thieme Verlag KG, Stuttgart, 2011, p. 675.
pmid: 28649462 |
|
(c) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748.
doi: 10.1002/anie.201109036 pmid: 28649462 |
|
(d) Oliver, S.; Evans, P. A. Synthesis 2013, 45, 3179.
doi: 10.1055/s-00000084 pmid: 28649462 |
|
(e) Remeš, M.; Veselý, J. In α-Alkylation of Carbonyl Compounds, Stereoselective Organocatalysis, John Wiley & Sons, New York, 2013, p. 267.
pmid: 28649462 |
|
(f) Shibatomi, K.; Narayama, A. Asian J. Org. Chem. 2013, 2, 812.
doi: 10.1002/ajoc.v2.10 pmid: 28649462 |
|
(g) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.
doi: 10.1021/acscatal.6b01886 pmid: 28649462 |
|
(h) Cano, R.; Zakarian, A.; McGlacken, G. P. Angew. Chem., Int. Ed. 2017, 56, 9278.
doi: 10.1002/anie.v56.32 pmid: 28649462 |
|
(i) Afewerki, S.; Córdova, A. Top. Curr. Chem. 2019, 377, 38.
pmid: 28649462 |
|
(j) Hao, Y.-J.; Hu, X.-S.; Zhou, Y.; Zhou, J.; Yu, J.-S. ACS Catal. 2020, 10, 955.
doi: 10.1021/acscatal.9b04480 pmid: 28649462 |
|
(k) Lee, H.-E.; Kim, D.; You, A.; Park, M. H.; Kim, M.; Kim, C. Catalysts 2020, 10, 861.
doi: 10.3390/catal10080861 pmid: 28649462 |
|
(l) Escudero-Casao, M.; Licini, G.; Orlandi, M. Synlett 2021, 32, 1473.
doi: 10.1055/a-1503-7339 pmid: 28649462 |
|
(m) Wright, T. B.; Evans, P. A. Chem. Rev. 2021, 121, 9196.
doi: 10.1021/acs.chemrev.0c00564 pmid: 28649462 |
|
(n) Dong, S.; Liu, X.; Feng, X. Acc. Chem. Res. 2022, 55, 415.
doi: 10.1021/acs.accounts.1c00664 pmid: 28649462 |
|
[4] |
(a) Godard, C.; Perandones, B. F.; Gual, A.; Claver, C. In Asymmetric Carbonylations, Comprehensive Inorganic Chemistry II, 2nd ed., Elsevier, Amsterdam, 2013, p. 383.
|
(b) Davison, R. T.; Kuker, E. L.; Dong, V. M. Acc. Chem. Res. 2021, 54, 1236.
doi: 10.1021/acs.accounts.0c00771 |
|
(c) Bai, S.-T.; Wen, J.; Zhang, X. In Asymmetric Carbonylations, Comprehensive Inorganic Chemistry II, 2nd ed., Elsevier, Amsterdam, 2022, p. 611.
|
|
[5] |
(a) Agbossou, F.; Carpentier, J.-F.; Mortreux, A. Chem. Rev. 1995, 95, 2485.
doi: 10.1021/cr00039a008 |
(b) Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. J. Mol. Catal. A-Chem. 1995, 104, 17.
doi: 10.1016/1381-1169(95)00130-1 |
|
(c) Perandones, B. F.; Godard, C.; Claver, C. In Hydroformylation for Organic Synthesis, Springer, Berlin, 2013, p. 79.
|
|
(d) Li, S.-L.; Li, Z.-X.; You, C.; Lv, H.; Zhang, X.-M. Chin. J. Org. Chem. 2019, 39, 1568 (in Chinese)
doi: 10.6023/cjoc201903044 |
|
(李帅龙, 李庄星, 由才, 吕辉, 张绪穆, 有机化学, 2019, 39, 1568.)
|
|
(e) Chakrabortty, S.; Almasalma, A. A.; de Vries, J. G. Catal. Sci. Technol. 2021, 11, 5388.
doi: 10.1039/D1CY00737H |
|
(f) Shen, C.; Dong, K. Synlett 2022, 33, 815.
doi: 10.1055/a-1796-2255 |
|
[6] |
(a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
doi: 10.1038/nature13274 pmid: 32905517 |
(b) Ananikov, V. P. ACS Catal. 2015, 5, 1964.
doi: 10.1021/acscatal.5b00072 pmid: 32905517 |
|
(c) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
doi: 10.1021/ar500345f pmid: 32905517 |
|
(d) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230.
doi: 10.1126/science.aaf7230 pmid: 32905517 |
|
(e) Diccianni, J. B.; Diao, T. Trends Chem. 2019, 1, 830.
doi: 10.1016/j.trechm.2019.08.004 pmid: 32905517 |
|
(f) Ogoshi, S. Nickel Catalysis in Organic Synthesis: Methods and Reactions, John Wiley & Sons, New York, 2019.
pmid: 32905517 |
|
(g) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124.
doi: 10.1021/acs.chemrev.9b00682 pmid: 32905517 |
|
(h) Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. ACS Catal. 2020, 10, 8237.
doi: 10.1021/acscatal.0c01842 pmid: 32905517 |
|
(i) Zhou, Z.; Xu, S.; Zhang, J.; Kong, W. Org. Chem. Front. 2020, 7, 3262.
doi: 10.1039/D0QO00901F pmid: 32905517 |
|
(j) Zhu, S.; Zhao, X.; Li, H.; Chu, L. Chem. Soc. Rev. 2021, 50, 10836.
doi: 10.1039/D1CS00399B pmid: 32905517 |
|
[7] |
(a) Ding, Z.; Wang, Y.; Liu, W.; Chen, Y.; Kong, W. J. Am. Chem. Soc. 2021, 143, 53.
doi: 10.1021/jacs.0c10055 |
(b) Chen, Z.-H.; Sun, R.-Z.; Yao, F.; Hu, X.-D.; Xiang, L.-X.; Cong, H.; Liu, W.-B. J. Am. Chem. Soc. 2022, 144, 4776.
doi: 10.1021/jacs.2c01237 |
|
[8] |
Hayashi, M.; Bachman, S.; Hashimoto, S.; Eichman, C. C.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 8997.
doi: 10.1021/jacs.6b02120 pmid: 27373124 |
[9] |
Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7442.
doi: 10.1021/ja402922w pmid: 23634932 |
[10] |
Wu, B.-B.; Xu, J.; Bian, K.-J.; Gao, Q.; Wang, X.-S. J. Am. Chem. Soc. 2022, 144, 6543.
doi: 10.1021/jacs.2c01422 |
[11] |
Wu, J.; Wu, H.; Liu, X.; Zhang, Y.; Huang, G.; Zhang, C. Org. Lett. 2022, 24, 4322.
doi: 10.1021/acs.orglett.2c01208 |
[12] |
(a) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
doi: 10.1039/C5QO00437C |
(b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
doi: 10.1038/s41570-017-0052 |
|
(c) Badir, S. O.; Molander, G. A. Chem 2020, 6, 1327.
doi: 10.1016/j.chempr.2020.05.013 |
|
(d) Zhang, H.-H.; Chen, H.; Zhu, C.; Yu, S. Sci. China: Chem. 2020, 63, 637.
doi: 10.1007/s11426-019-9701-5 |
|
(e) Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Chem. Sci. 2020, 11, 4051.
doi: 10.1039/D0SC00712A |
|
(f) Lu, F.-D.; He, G.-F.; Lu, L.-Q.; Xiao, W.-J. Green Chem. 2021, 23, 5379.
doi: 10.1039/D1GC00993A |
|
(g) Lu, F.-D.; Chen, J.; Jiang, X.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2021, 50, 12808.
doi: 10.1039/D1CS00210D |
|
(h) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
doi: 10.1021/acs.chemrev.1c00383 |
|
(i) Zhu, S.; Li, H.; Li, Y.; Huang, Z.; Chu, L. Org. Chem. Front. 2022.
|
|
[13] |
Gandolfo, E.; Tang, X.; Raha Roy, S.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 16854.
doi: 10.1002/anie.201910168 pmid: 31532568 |
[14] |
Shu, X.; Huan, L.; Huang, Q.; Huo, H. J. Am. Chem. Soc. 2020, 142, 19058.
doi: 10.1021/jacs.0c10471 |
[15] |
Huan, L.; Shu, X.; Zu, W.; Zhong, D.; Huo, H. Nat. Commun. 2021, 12, 3536.
doi: 10.1038/s41467-021-23887-2 |
[16] |
Donets, P. A.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 11772.
doi: 10.1021/ja406730t pmid: 23909575 |
[17] |
(a) Chen, J.; Zhu, S. J. Am. Chem. Soc. 2021, 143, 14089.
doi: 10.1021/jacs.1c07851 |
(b) Chen, J.; Deng, G.; Wang, Y.; Zhu, S. Chin. J. Chem. 2023, 41, 294.
doi: 10.1002/cjoc.v41.3 |
|
[18] |
Jiang, X.; Sheng, F.-T.; Zhang, Y.; Deng, G.; Zhu, S. J. Am. Chem. Soc. 2022, 144, 21448.
doi: 10.1021/jacs.2c10785 |
[19] |
(a) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287.
doi: 10.1039/C9SC06006E |
(b) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371.
doi: 10.1002/cjoc.v38.11 |
|
(c) Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.
doi: 10.1021/acscatal.0c02115 |
|
(d) Tu, H.-Y.; Zhu, S.; Qing, F.-L.; Chu, L. Synthesis 2020, 52, 1346.
doi: 10.1055/s-0039-1690842 |
|
(e) Xu, L.; Wang, F.; Chen, F.; Zhu, S.-Q.; Chu, L.-L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese)
doi: 10.6023/cjoc202109002 |
|
(徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.)
doi: 10.6023/cjoc202109002 |
|
[20] |
Li, Y.; Zhang, F.-P.; Wang, R.-H.; Qi, S.-L.; Luan, Y.-X.; Ye, M. J. Am. Chem. Soc. 2020, 142, 19844.
doi: 10.1021/jacs.0c09949 |
[21] |
He, F.; Hou, L.; Wu, X.; Ding, H.; Qu, J.; Chen, Y. CCS Chem. 2023, 5, 341.
doi: 10.31635/ccschem.022.202202010 |
[22] |
Lan, Y.; Wang, C. Commun. Chem. 2020, 3, 45.
doi: 10.1038/s42004-020-0292-3 |
[23] |
Wu, J.; Wang, C. Org. Lett. 2021, 23, 6407.
doi: 10.1021/acs.orglett.1c02223 |
[24] |
Wu, X.; Qu, J.; Chen, Y. J. Am. Chem. Soc. 2020, 142, 15654.
doi: 10.1021/jacs.0c07126 |
[25] |
Wu, X.; Luan, B.; Zhao, W.; He, F.; X.-Y. Wu, J. Qu, Y. Chen, Angew. Chem., Int. Ed. 2022, 61, e202111598.
|
[26] |
Wu, X.; Turlik, A.; Luan, B.; He, F.; Qu, J.; Houk, K. N.; Chen, Y. Angew. Chem., Int. Ed. 2022, 61, e202207536.
|
[27] |
Zhang, C.; Wu, X.; Xia, T.; Qu, J.; Chen, Y. Nat. Commun. 2022, 13, 5964.
doi: 10.1038/s41467-022-33425-3 |
[28] |
Fan, P.; Lan, Y.; Zhang, C.; Wang, C. J. Am. Chem. Soc. 2020, 142, 2180.
doi: 10.1021/jacs.9b12554 |
[29] |
Marchese, A. D.; Larin, E. M.; Mirabi, B.; Lautens, M. Acc. Chem. Res. 2020, 53, 1605.
doi: 10.1021/acs.accounts.0c00297 |
[30] |
Marchese, A. D.; Wollenburg, M.; Mirabi, B.; Abel-Snape, X.; Whyte, A.; Glorius, F.; Lautens, M. ACS Catal. 2020, 10, 4780.
doi: 10.1021/acscatal.0c00841 |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[3] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[4] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[5] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[6] | 梁陆祺, 奚娟, 姜若楠, 杨艺, 孙丰钢, 张立志, 李新进, 刘会. 镍催化硫酯转移反应合成芳基硫酯[J]. 有机化学, 2023, 43(4): 1566-1573. |
[7] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[8] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
[9] | 郭萍, 周勇, 赵杰. 多取代烯烃的Z∶E高选择性合成制备[J]. 有机化学, 2023, 43(3): 855-872. |
[10] | 李落墨, 杨小会. 离子转移反应的研究进展[J]. 有机化学, 2023, 43(3): 1036-1044. |
[11] | 侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠. 光催化烯烃α-酰化反应[J]. 有机化学, 2023, 43(3): 1012-1022. |
[12] | 宋树勇, 徐森苗. 三氟甲基烯烃的选择性C-F键活化最新进展[J]. 有机化学, 2023, 43(2): 411-425. |
[13] | 吴利城, 伍贤青, 曲景平, 陈宜峰. Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用[J]. 有机化学, 2023, 43(12): 4239-4250. |
[14] | 齐云鹏, 林登凯, 陈良安. 酰基镍作为关键中间体参与的酰基还原制备酮的研究进展[J]. 有机化学, 2023, 43(11): 3861-3875. |
[15] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||