有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3312-3318.DOI: 10.6023/cjoc202301024 上一篇 下一篇
研究简报
收稿日期:
2023-01-29
修回日期:
2023-03-26
发布日期:
2023-05-11
基金资助:
Min Xi, Chao Duan, Jie Chi, Tian Fu, Xiaolong Su, Hongshe Wang()
Received:
2023-01-29
Revised:
2023-03-26
Published:
2023-05-11
Contact:
E-mail: Supported by:
文章分享
以腐殖酸为催化剂, 在室温无溶剂条件下, 通过醛(酮)、胺和三甲基硅氰(TMSCN)的一锅三组分Strecker反应, 绿色高效合成了α-氨基腈. 该法具有产率高、无需金属催化剂、反应时间短、反应条件温和、操作简便以及催化剂绿色并可重复使用等优点.
席敏, 段超, 迟捷, 付甜, 苏小龙, 王宏社. 腐殖酸作用下Strecker反应快速高效合成α-氨基腈[J]. 有机化学, 2023, 43(9): 3312-3318.
Min Xi, Chao Duan, Jie Chi, Tian Fu, Xiaolong Su, Hongshe Wang. An Efficient and Rapid Synthesis of α-Aminonitriles via Strecker Reaction Catalyzed by Humic Acid[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3312-3318.
Entry | Conditions | Yield/% | Reference |
---|---|---|---|
1a | Mitsunobu's reagent (100 mol%), solvent-free, r.t., 20 min | 98 | [35] |
2 | Fe3O4 (10 mol%), solvent-free, r.t., 20 min | 95 | [16] |
3 | TiCl3•4H2O (1 mol%), solvent-free, r.t., 15 min | 94 | [36] |
4 | SO42–/ZrO2 (0.1 g/mmol), THF, r.t., 90 min | 93 | [37] |
5a | I2 (10 mol%), CH3CN, r.t., 1 h | 94 | [19] |
6 | Fe3O4@SiO2 core-shell MNP (1 mg/mmol), solvent-free, 50 ℃, 30 min | 87 | [13] |
7 | Fe3O4@cellulose-OSO3H (0.04 g/mmol), EtOH, r.t., 15 min | 87 | [38] |
8 | Cd(II)-MOF (3 mol%), solvent-free, r.t., 6 h | 91 | [29f] |
9 | SmI3 (10 mol%), THF, r.t., 30 min | 98 | [27] |
10a | Humic acid (0.1 g/mmol), solvent-free, r.t., 5 min | 98 | This work |
Entry | Conditions | Yield/% | Reference |
---|---|---|---|
1a | Mitsunobu's reagent (100 mol%), solvent-free, r.t., 20 min | 98 | [35] |
2 | Fe3O4 (10 mol%), solvent-free, r.t., 20 min | 95 | [16] |
3 | TiCl3•4H2O (1 mol%), solvent-free, r.t., 15 min | 94 | [36] |
4 | SO42–/ZrO2 (0.1 g/mmol), THF, r.t., 90 min | 93 | [37] |
5a | I2 (10 mol%), CH3CN, r.t., 1 h | 94 | [19] |
6 | Fe3O4@SiO2 core-shell MNP (1 mg/mmol), solvent-free, 50 ℃, 30 min | 87 | [13] |
7 | Fe3O4@cellulose-OSO3H (0.04 g/mmol), EtOH, r.t., 15 min | 87 | [38] |
8 | Cd(II)-MOF (3 mol%), solvent-free, r.t., 6 h | 91 | [29f] |
9 | SmI3 (10 mol%), THF, r.t., 30 min | 98 | [27] |
10a | Humic acid (0.1 g/mmol), solvent-free, r.t., 5 min | 98 | This work |
[1] |
Enders D.; Shilvock J. P. Chem. Soc. Rev. 2000, 29, 359.
doi: 10.1039/a908290e |
[2] |
(a) Wagner A.; Ofial A. R. J. Org. Chem. 2015, 80, 2848.
doi: 10.1021/jo502846c |
(b) Echevarria I.; Vaquero M.; Quesada R.; Espino G. Inorg. Chem. Front. 2020, 7, 3092.
doi: 10.1039/D0QI00580K |
|
(c) He W.-B.; Tang L.-L.; Jiang J.; Li X.; Xu X.; Yang T.-B.; He W.-M. Molecules 2023, 28, 1397.
doi: 10.3390/molecules28031397 |
|
(d) Gui Q.-W.; He X.; Wang W.; Zhou H.; Dong Y.; Wang N.; Tang J.-X.; Cao Z.; He W.-M. Green Chem. 2020, 22, 118.
doi: 10.1039/C9GC02657F |
|
(e) Gui Q.-W.; Teng F.; Ying S.-N.; Liu Y.; Guo T.; Tang J.-X.; Chen J.-Y.; Cao Z.; He W.-M. Chin. Chem. Lett. 2020, 31, 3241.
doi: 10.1016/j.cclet.2020.07.017 |
|
[3] |
(a) Wang J.; Liu X.; Feng X. Chem. Rev. 2011, 111, 6947.
doi: 10.1021/cr200057t pmid: 12733893 |
(b) Negru M.; Schollmeyer D.; Kunz H. Angew. Chem., Int. Ed. 2007, 46, 9339.
doi: 10.1002/(ISSN)1521-3773 pmid: 12733893 |
|
(c) Wang J.; Hu X.; Jiang J.; Gou S.; Huang X.; Liu X.; Feng X. Angew. Chem., Int. Ed. 2007, 46, 8468.
doi: 10.1002/(ISSN)1521-3773 pmid: 12733893 |
|
(d) Miyagawa S.; Yoshimura K.; Yamazaki Y.; Takamatsu N.; Kuraishi T.; Aiba S.; Tokunaga Y.; Kawasaki T. Angew. Chem., Int. Ed. 2017, 56, 1055.
doi: 10.1002/anie.201611128 pmid: 12733893 |
|
(e) Ma H.-C.; Chen G.-J.; Huang F.; Dong Y.-B. J. Am. Chem. Soc. 2020, 142, 12574.
doi: 10.1021/jacs.0c04722 pmid: 12733893 |
|
(f) Abell J. P.; Yamamoto H. J. Am. Chem. Soc. 2009, 131, 15118.
doi: 10.1021/ja907268g pmid: 12733893 |
|
(g) Masumoto S.; Usuda H.; Suzuki M.; Kanai M.; Shibasaki M. J. Am. Chem. Soc. 2003, 125, 5634.
pmid: 12733893 |
|
[4] |
Harusawa S.; Hmada Y.; Shiori T. Tetrahedron Lett. 1979, 20, 4663.
doi: 10.1016/S0040-4039(01)86677-6 |
[5] |
Nakamura S.; Sato N.; Sugimoto M.; Toru T. Tetrahedron: Asymmetry 2004, 15, 1513.
doi: 10.1016/j.tetasy.2004.03.040 |
[6] |
Vachal P.; Jacobsen E. N. J. Am. Chem. Soc. 2002, 124, 10012.
pmid: 12188665 |
[7] |
Li Z.; Ma Y.; Xu J.; Shi J.; Cai H. Tetrahedron Lett. 2010, 51, 3922.
doi: 10.1016/j.tetlet.2010.05.088 |
[8] |
Cruz-Acosta F.; Santos-Exposito A.; Armas P.; Garcia-Tellado F. Chem. Commun. 2009, 45, 6839.
|
[9] |
Sipos S.; Jablonkai I. Tetrahedron Lett. 2009, 50, 1844.
doi: 10.1016/j.tetlet.2009.02.004 |
[10] |
Abell J. P.; Yamamoto H. J. Am. Chem. Soc. 2009, 131, 15118.
doi: 10.1021/ja907268g |
[11] |
Khalaf E.; Alameri A. A.; Malviya J.; Kumar T. C. A.; Altalbawy F. M. A.; Alfilh R. H. C.; KazemneJadi M. Catal. Lett. 2022, 152, 3317.
doi: 10.1007/s10562-021-03898-w |
[12] |
Hernandez J. G.; Turberg M.; Schiffers I.; Bolm C. Chem.-Eur. J. 2016, 22, 14513.
doi: 10.1002/chem.v22.41 |
[13] |
Baghery S.; Zolfigol M. A.; Schirhagl R.; Hasani M.; Stuart M. C. A.; Nagl A. Appl. Organomet. Chem. 2017, 31, 3883.
|
[14] |
Mousavi-Mashhadi S. A.; Shiri A. Mol. Divers. 2022, 26, 3463.
doi: 10.1007/s11030-021-10341-0 |
[15] |
Kaur G.; Shamim M.; BhardwaJ V.; Gupta V. K.; BanerJee B. Synth. Commun. 2020, 50, 1545.
doi: 10.1080/00397911.2020.1745844 |
[16] |
MoJtahedi M. M.; Abaee M. S.; Alishiri T. Tetrahedron Lett. 2009, 50, 2322.
doi: 10.1016/j.tetlet.2009.02.199 |
[17] |
Pasha M. A.; NanJundaswamy H. M.; Jayashankara V. P. Synth. Commun. 2007, 37, 4371.
doi: 10.1080/00397910701578180 |
[18] |
(a) Eslami M.; Dekamin M. G.; Motlagh L.; Maleki A. Green Chem. Lett. Rev. 2018, 11, 36.
doi: 10.1080/17518253.2017.1421269 pmid: 35919186 |
(b) Kouznetsov V. V.; Hernandez J. G. RSC Adv. 2022, 12, 20807.
doi: 10.1039/d2ra03102g pmid: 35919186 |
|
[19] |
Royer L.; De S. K.; Gibbs R. A. Tetrahedron Lett. 2005, 46, 4595.
|
[20] |
(a) Dekamin M. G.; Azimoshan M.; Ramezani L. Green Chem. 2013, 15, 811.
doi: 10.1039/c3gc36901c |
(b) Das S.; Kumar R.; Devadkar A.; Panda T. K. Asian J. Org. Chem. 2020, 9, 1217.
doi: 10.1002/ajoc.v9.8 |
|
[21] |
Rahmati M.; Ghafuri H. Res. Chem. Intermed. 2021, 47, 1489.
doi: 10.1007/s11164-020-04370-x |
[22] |
Verma K.; Sharma A.; Badru R. Curr. Res. Green Sustainable Chem. 2021, 4, 100060.
doi: 10.1016/j.crgsc.2021.100060 |
[23] |
Kaur B.; Chand S.; Malik A. K. J. Clean. Prod. 2019, 234, 329.
doi: 10.1016/j.jclepro.2019.06.080 |
[24] |
Nasseri M. A.; Ramezani-Moghadam S.; KazemneJadi M.; Allahresani A. Res. Chem. Intermed. 2020, 46, 4233.
doi: 10.1007/s11164-020-04203-x |
[25] |
Zareyee D.; Rad A. S.; Ataei Z. Appl. Organomet. Chem. 2018, 32, 4422.
|
[26] |
Fatahi H.; Jafarzadeh M.; Pourmanouchehri Z. J. Heterocycl. Chem. 2019, 56, 2090.
doi: 10.1002/jhet.v56.8 |
[27] |
Wu J.; Chen W.; Luo M.; He X.; Li Z. Chin. J. Org. Chem. 2010, 30, 1497. (in Chinese)
doi: 10.1002/cjoc.v30.7 |
(邬继荣, 陈巍峰, 罗蒙贤, 贺小林, 李志芳, 有机化学, 2010, 30, 1497.)
|
|
[28] |
Maleki A.; Azadegan S.; Rahimi J. Appl. Organomet. Chem. 2019, 33, 4810.
|
[29] |
(a) Reinares-Fisac D.; Aguirre-Diaz L. M.; Iglesias M. J. Am. Chem. Soc. 2016, 138, 9089.
doi: 10.1021/jacs.6b05706 pmid: 27420904 |
(b) Gandhi S.; Sharma V.; Koul I. S.; Mandal S. K. Catal. Lett. 2022, 152, 3558.
doi: 10.1007/s10562-022-03923-6 pmid: 27420904 |
|
(c) Gomez-Oliveira E. P.; Mendez N.; Iglesias M.; Gutierrez- Puebla E.; Aguirre-Diaz L. M.; Monge M. A. Inorg. Chem. 2022, 61, 7523.
doi: 10.1021/acs.inorgchem.2c00628 pmid: 27420904 |
|
(d) Ramsperger C. A.; Tufts N. Q.; Yadav A. K.; Lessard J. M.; Stylianou K. C. ACS Appl. Mater. Interfaces 2022, 14, 49957.
doi: 10.1021/acsami.2c13945 pmid: 27420904 |
|
(e) Gupta V.; Mandal S. K. Inorg. Chem. 2019, 58, 3219.
doi: 10.1021/acs.inorgchem.8b03307 pmid: 27420904 |
|
(f) Gupta V.; Mandal S. K. Inorg. Chem. 2020, 59, 4273.
doi: 10.1021/acs.inorgchem.9b03051 pmid: 27420904 |
|
(g) Khan S.; Markad D.; Mandal S. K. Inorg. Chem. 2023, 62, 275.
doi: 10.1021/acs.inorgchem.2c03369 pmid: 27420904 |
|
(h) Sachan S. K.; Anantharaman G. Inorg. Chem. 2021, 60, 9238.
doi: 10.1021/acs.inorgchem.1c00981 pmid: 27420904 |
|
[30] |
Li X.-T.; Zou J.; Wang T.-H.; Ma H.-C.; Chen G.-J.; Dong Y.-B. J. Am. Chem. Soc. 2020, 142, 6521.
doi: 10.1021/jacs.0c00969 |
[31] |
(a) Song H.-Y.; Liu M.-Y.; Huang J.; Wang D.; Jiang J.; Chen J.-Y.; Yang T.-B.; He W.-M. J. Org. Chem. 2023, 88, 2288.
doi: 10.1021/acs.joc.2c02679 |
(b) He W.-B.; Zhao S.-J.; Chen J.-Y.; Jiang J.; Chen X.; Xu X.; He W.-M. Chin. Chem. Lett. 2023, 34, 107640.
doi: 10.1016/j.cclet.2022.06.063 |
|
(c) Chen J.-Y.; Li H.-X.; Mu S.-Y.; Song H.-Y.; Wu Z.-L.; Yang T.-B.; Jiang J.; He W.-M. Org. Biomol. Chem. 2022, 20, 8501.
doi: 10.1039/D2OB01612E |
|
(d) Gui Q.-W.; Wang B.-B.; Zhu S.; Li F.-L.; Zhu M.-X.; Yi M.; Yu J.-L.; Wu Z.-L.; He W.-M. Green Chem. 2021, 23, 4430.
|
|
[32] |
Han B.; He X. H.; Liu Y. Q.; He G.; Peng C.; Li J. L. Chem. Soc. Rev. 2021, 50, 1522.
doi: 10.1039/d0cs00196a pmid: 33496291 |
[33] |
(a) Mitra B.; Ghosh P. ChemistrySelect 2021, 6, 68.
doi: 10.1002/slct.v6.1 |
(b) Wei Z.; Li J.; Wang Z.; Li P.; Wang Y. Chin. J. Org. Chem. 2017, 37, 1835. (in Chinese)
doi: 10.6023/cjoc201612055 |
|
(魏振中, 李江飞, 王泽云, 李品华, 王永秋, 有机化学, 2017, 37, 1835.)
doi: 10.6023/cjoc201612055 |
|
[34] |
Zhang Y.; Han M. J. Chem. Res. 2011, 35, 568.
doi: 10.3184/174751911X13166274023054 |
[35] |
Chaturvedi D.; Chaturvedi A. K.; Mishra N.; Mishra V. Tetrahedron Lett. 2012, 53, 5398.
doi: 10.1016/j.tetlet.2012.07.117 |
[36] |
MaJhi A.; Kim S. S.; Kadam S. T. J. Organomet. Chem. 2008, 22, 705.
|
[37] |
Reddy B. M.; Thirupathi B.; Patil M. K. J. Mol. Catal. A: Chem. 2009, 307, 154.
doi: 10.1016/j.molcata.2009.03.022 |
[38] |
Maleki A.; Akhlaghi E.; Paydar R. Appl. Organomet. Chem. 2016, 30, 382.
doi: 10.1002/aoc.v30.6 |
[1] | 张剑, 梁万洁, 杨艺, 闫法超, 刘会. 联烯胺化合物的区域选择性双官能团化[J]. 有机化学, 2024, 44(2): 335-348. |
[2] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[3] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[4] | 张勇, 田志高, 黄琳, 侯秋飞, 范红红, 汪万强. α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用[J]. 有机化学, 2024, 44(2): 561-572. |
[5] | 陶苏艳, 项紫欣, 白俊杰, 万潇, 万小兵. 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024, 44(2): 550-560. |
[6] | 江港钟, 林嘉欣, 鲍晓光, 万小兵. 亚硝酸异戊酯活化伯磺酰胺制备磺酰溴与磺酰氯[J]. 有机化学, 2024, 44(2): 533-549. |
[7] | 曹同阳, 李玮, 王力竞. N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024, 44(2): 508-524. |
[8] | 李洋, 董亚楠, 李跃辉. 经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物[J]. 有机化学, 2024, 44(2): 638-643. |
[9] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[10] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[11] | 黄志友, 杨平, 何波, 欧文霞, 袁思雨. 吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究[J]. 有机化学, 2024, 44(1): 309-315. |
[12] | 文思, 丁宇浩, 田青于, 葛进, 程国林. 铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶[J]. 有机化学, 2024, 44(1): 291-300. |
[13] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[14] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[15] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||