有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3098-3106.DOI: 10.6023/cjoc202303016 上一篇 下一篇
综述与进展
张建涛a,*(), 张聪a, 莫诺琳a, 罗佳婷a, 陈莲芬b,*(), 刘卫兵a,*()
收稿日期:
2023-03-11
修回日期:
2023-04-17
发布日期:
2023-05-11
基金资助:
Jiantao Zhanga(), Cong Zhanga, Nuolin Moa, Jiating Luoa, Lianfen Chenb(), Weibing Liua()
Received:
2023-03-11
Revised:
2023-04-17
Published:
2023-05-11
Contact:
E-mail: Supported by:
文章分享
多卤甲基化合物, 尤其是具有二氯甲基或三氯甲基结构的多氯甲基化合物, 被广泛应用于医药、农业及有机功能材料等领域. 此外, 多氯甲基还可以很容易地转化为氨基、羟基、羧基和羰基等各种官能团, 这些官能团可进一步用于构建复杂的环状结构. 因此, 开发有效的多氯甲基化策略, 在许多具有生物活性的天然分子的合成中具有重要的意义. 氯仿是一种容易获得的化学资源, 在自由基引发剂存在下可发生自由基转化, 通过氢原子转移(HAT)形成•CCl3自由基或通过卤素原子转移(XAT)形成•CHCl2自由基. 按照氯仿产生自由基种类的不同, 对氯仿参与烯烃自由基加成, 从而构建多氯甲基取代化合物的最新研究进展进行了梳理和总结, 并对反应范围、局限性以及部分机理进行了讨论.
张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106.
Jiantao Zhang, Cong Zhang, Nuolin Mo, Jiating Luo, Lianfen Chen, Weibing Liu. Research Progress in Radical Addition Reaction of Alkenes Involving Chloroform[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3098-3106.
[1] |
(a) Lu M.-Z.; Loh T.-P. Org. Lett. 2014, 16, 4698.
doi: 10.1021/ol502411c pmid: 32982624 |
(b) Tian Y.; Liu Z.-Q. RSC Adv. 2014, 4, 64855.
doi: 10.1039/C4RA12032A pmid: 32982624 |
|
(c) Li X.; Xu J.; Gao Y.; Fang H.; Tang G.; Zhao Y. J. Org. Chem. 2015, 80, 2621.
doi: 10.1021/jo502777b pmid: 32982624 |
|
(d) Pan C.; Gao D.; Yang Z.; Wu C.; Yu J.-T. Org. Biomol. Chem. 2018, 16, 5752.
doi: 10.1039/C8OB01554F pmid: 32982624 |
|
(e) Zwettler N.; Dupé A.; Klokić S.; Milinković A.; Rodić D.; Walg S.; Neshchadin D.; Belaj F.; Mösch-Zanetti N. C. Adv. Synth. Catal. 2020, 362, 3170.
doi: 10.1002/adsc.202000425 pmid: 32982624 |
|
[2] |
(a) Huo H.; Wang C.; Harms K.; Meggers E. J. Am. Chem. Soc. 2015, 137, 9551.
doi: 10.1021/jacs.5b06010 pmid: 26487570 |
(b) Ueda M.; Doi N.; Miyagawa H.; Sugita S.; Takeda N.; Shinada T.; Miyata O. Chem. Commun. 2015, 51, 4204.
doi: 10.1039/C4CC09649E pmid: 26487570 |
|
(c) Nishimine T.; Taira H.; Tokunaga E.; Shiro M.; Shibata N. Angew. Chem., Int. Ed. 2016, 55, 359.
doi: 10.1002/anie.201508574 pmid: 26487570 |
|
(d) Xu C.; Zhu Z.; Wang Y.; Jing Z.; Gao B.; Zhao L.; Dong W.-K. J. Org. Chem. 2019, 84, 2234.
doi: 10.1021/acs.joc.8b03238 pmid: 26487570 |
|
(e) Harada S.; Masuda R.; Morikawa T.; Nishida A. Eur. J. Org. Chem. 2021, 2021, 4531.
doi: 10.1002/ejoc.v2021.32 pmid: 26487570 |
|
(f) Kusakabe M.; Nagao K.; Ohmiya H. Org. Lett. 2021, 23, 7242.
doi: 10.1021/acs.orglett.1c02639 pmid: 26487570 |
|
[3] |
(a) Gu Z.-H.; Zakarian A. Angew. Chem., Int. Ed. 2010, 49, 9702.
doi: 10.1002/anie.201005354 pmid: 18459798 |
(b) Kapojos M. M.; Abdjul D. B.; Yamazaki H.; Ohshiro T.; Rotinsulu H.; Wewengkang D. S.; Sumilat D. A.; Tomoda H.; Namikoshi M.; Uchida R. Bioorg. Med. Chem. Lett. 2018, 28, 1911.
doi: S0960-894X(18)30283-X pmid: 18459798 |
|
(c) Ardá A.; Soengas R. G.; Nieto M. I.; Jiménez C.; Rodríguez J. Org. Lett. 2008, 10, 2175.
doi: 10.1021/ol800551g pmid: 18459798 |
|
[4] |
Liu X.; Li B.; Gu Z. J. Org. Chem. 2015, 80, 7547.
doi: 10.1021/acs.joc.5b01126 |
[5] |
Huang G.; Yu J.-T.; Pan C. Adv. Synth. Catal. 2021, 363, 305.
doi: 10.1002/adsc.v363.2 |
[6] |
Wang Z.; Ji X.; Zhao J.; Huang H. Green Chem. 2019, 21, 5512.
doi: 10.1039/C9GC03008E |
[7] |
(a) Li C.-C.; Yang S.-D. Org. Biomol. Chem. 2016, 14, 4365.
doi: 10.1039/C6OB00554C |
(b) Liu Z.; Zhong S.; Ji X.; Deng G.-J.; Huang H. ACS Catal. 2021, 11, 4422.
doi: 10.1021/acscatal.1c00649 |
|
(c) Wu X.; Zhao F.; Ji X.; Huang H. Chin. J. Org. Chem. 2022, 42, 4323. (in Chinese)
doi: 10.6023/cjoc202208036 |
|
(巫晓婷, 赵峰, 姬小趁, 黄华文, 有机化学, 2022, 42, 4323.)
doi: 10.6023/cjoc202208036 |
|
[8] |
Chan C.-W.; Lee P.-Y.; Yu W.-Y. Tetrahedron Lett. 2015, 56, 2559.
doi: 10.1016/j.tetlet.2015.03.109 |
[9] |
Sheng W.; Jin C.; Shan S.; Jia Y.; Gao J. Chin. J. Org. Chem. 2016, 36, 325. (in Chinese)
doi: 10.6023/cjoc201509008 |
(盛卫坚, 金城安, 单尚, 贾义霞, 高建荣, 有机化学, 2016, 36, 325.)
doi: 10.6023/cjoc201509008 |
|
[10] |
Wang T.-L.; Zhang B.-S.; Liu J.-J.; Liu X.-J.; Wang X.-C.; Quan Z.-J. Org. Chem. Front. 2022, 9, 1004.
doi: 10.1039/D1QO01662H |
[11] |
Iyer A.; Ahuja S.; Jockusch S.; Ugrinov A.; Sivaguru J. Chem. Commun. 2018, 54, 11021.
doi: 10.1039/C8CC05924A |
[12] |
Zhao Z.-W.; Ran Y.-S.; Huo Y.-J.; Chen X.; Ding X.-L.; Zhang C.; Li Y.-M. J. Org. Chem. 2022, 87, 4183.
doi: 10.1021/acs.joc.1c03024 |
[13] |
Li W.; Sun Y.; Yao Y.; Xu Y.; Li P.; Liu Y.; Liang D. Chin. J. Org. Chem. 2019, 39, 1727. (in Chinese)
doi: 10.6023/cjoc201901047 |
(李文兰, 孙一茼, 姚永超, 许颖, 李鹏, 刘颖杰, 梁德强, 有机化学, 2019, 39, 1727.)
doi: 10.6023/cjoc201901047 |
|
[14] |
Ge H.; Du K.; Sheng W. Chin. J. Org. Chem. 2020, 40, 1625. (in Chinese)
doi: 10.6023/cjoc201911023 |
(葛浩程, 杜科莹, 盛卫坚, 有机化学, 2020, 40, 1625.)
doi: 10.6023/cjoc201911023 |
|
[15] |
Liu B.; Hu F.; Shi B.-F. ACS Catal. 2015, 5, 1863.
doi: 10.1021/acscatal.5b00050 |
[16] |
Luo W.; Jiang K.; Li Y.; Jiang H.; Yin B. Org. Lett. 2020, 22, 2093.
doi: 10.1021/acs.orglett.0c00582 |
[17] |
Liang Y.-Y.; Huang J.; Ouyang X.-H.; Qin J.-H.; Song R.-J.; Li J.-H. Chem. Commun. 2021, 57, 3684.
doi: 10.1039/D1CC00400J |
[18] |
Huang J.; Liang Y.-Y.; Ouyang X.-H.; Xiao Y.-T.; Qin J.-H.; Song R.-J.; Li J.-H. Org. Chem. Front. 2021, 8, 7009.
doi: 10.1039/D1QO01263K |
[19] |
Liu H.; Yang Z.; Yu J.-T.; Pan C. Adv. Synth. Catal. 2022, 364, 1085.
doi: 10.1002/adsc.v364.6 |
[20] |
(a) Zhang Y.-X.; Jin R.-X.; Yin H.; Li Y.; Wang X.-S. Org. Lett. 2018, 20, 7283.
doi: 10.1021/acs.orglett.8b03208 |
(b) Xu L.; Chen J.; Chu L. Org. Chem. Front. 2019, 6, 512.
doi: 10.1039/C8QO01142G |
|
(c) Wu M.-C.; Li M.-Z.; Chen Y.-X.; Liu F.; Xiao J.-A.; Chen K.; Xiang H.-Y.; Yang H. Org. Lett. 2022, 24, 6412.
doi: 10.1021/acs.orglett.2c02439 |
|
(d) Wu M.-C.; Chen Y.-X.; Li M.-Z.; Xiao J.-A.; Ye Z.-P.; Guan J.-P.; Xiang H.-Y.; Chen K.; Yang H. J. Org. Chem. 2022, 88, 6354.
doi: 10.1021/acs.joc.2c01106 |
|
[21] |
Wu C.; Hui X.; Zhang D.; Zhang M.; Zhu Y.; Wang S. Green Chem. 2022, 24, 1103.
doi: 10.1039/D1GC04109F |
[22] |
Chen C.; Tan H.; Liu B.; Yue C.; Liu W. Org. Chem. Front. 2018, 5, 3143.
doi: 10.1039/C8QO00868J |
[23] |
Neff R. K.; Su Y.-L.; Liu S.; Rosado M.; Zhang X.; Doyle M. P. J. Am. Chem. Soc. 2019, 141, 16643.
doi: 10.1021/jacs.9b05921 |
[24] |
Su Y.-L.; Tram L.; Wherritt D.; Arman H.; Griffith W. P.; Doyle M. P. ACS Catal. 2020, 10, 13682.
doi: 10.1021/acscatal.0c04243 |
[25] |
Zhang J.; Zhou P.; Yin A.; Zhang S.; Liu W. J. Org. Chem. 2021, 86, 8980.
doi: 10.1021/acs.joc.1c00823 |
[26] |
Chen C.; Li Y.; Pan Y.; Duan L.; Liu W. Org. Chem. Front. 2019, 6, 2032.
doi: 10.1039/c9qo00400a |
[27] |
Mazzanti S.; Kurpil B.; Pieber B.; Antonietti M.; Savateev A. Nat. Commun. 2020, 11, 1387.
doi: 10.1038/s41467-020-15131-0 pmid: 32170119 |
[28] |
Chen Y.; Qu Z.; Chen S.; Ji X.; Deng G. J.; Huang H. Adv. Synth. Catal. 2022, 364, 1573.
doi: 10.1002/adsc.v364.9 |
[29] |
Donohoe T. J.; Kabeshov M. A.; Rathi A. H.; Smith I. E. D. Org. Biomol. Chem. 2012, 10, 1093.
doi: 10.1039/C1OB06587D |
[30] |
(a) Wang Z.; Wang L.; Wang Z.; Li P.; Zhang Y. Chin. Chem. Lett. 2021, 32, 429.
doi: 10.1016/j.cclet.2020.02.022 |
(b) Wu M.-C.; Li M.-Z.; Chen J.-Y.; Xiao J.-A.; Xiang H.-Y.; Chen K.; Yang H. Chem. Commun. 2022, 58, 11591.
doi: 10.1039/D2CC04520F |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[3] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
[4] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[5] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[6] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[7] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[8] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
[9] | 侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠. 光催化烯烃α-酰化反应[J]. 有机化学, 2023, 43(3): 1012-1022. |
[10] | 张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035. |
[11] | 李落墨, 杨小会. 离子转移反应的研究进展[J]. 有机化学, 2023, 43(3): 1036-1044. |
[12] | 郭萍, 周勇, 赵杰. 多取代烯烃的Z∶E高选择性合成制备[J]. 有机化学, 2023, 43(3): 855-872. |
[13] | 宋树勇, 徐森苗. 三氟甲基烯烃的选择性C-F键活化最新进展[J]. 有机化学, 2023, 43(2): 411-425. |
[14] | 霍炳豪, 郭聪慧, 徐占辉. Mn(acac)3促进烯醇酯与亚磷酸酯的自由基氧化偶联反应合成β-酮膦酸酯[J]. 有机化学, 2023, 43(11): 3989-3996. |
[15] | 孙伟, 朱守非. 铁系金属催化烯烃与三级硅烷的硅氢化反应研究进展[J]. 有机化学, 2023, 43(10): 3339-3351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||