有机化学 ›› 2024, Vol. 44 ›› Issue (7): 2274-2285.DOI: 10.6023/cjoc202401016 上一篇 下一篇
研究论文
收稿日期:
2024-01-15
修回日期:
2024-03-28
发布日期:
2024-04-10
基金资助:
Shuyu Meng, Wentao Guo, Quanrui Wang()
Received:
2024-01-15
Revised:
2024-03-28
Published:
2024-04-10
Contact:
E-mail: Supported by:
文章分享
报道了一种无需过渡金属催化的四取代呋喃类化合物的合成策略. 在三氟化硼乙醚络合物的作用下, 炔基亚砜与炔酰胺或炔醚发生反应, 经交叉偶联、[3,3]-硫鎓离子重排和5-exo-dig杂环化关环的串联步骤生成四取代呋喃. 产物中呋喃环α-位的烷硫基可通过进一步后修饰反应, 转化为所需的其它烷基或芳基取代基.
孟书玉, 郭闻涛, 王全瑞. 基于炔基亚砜与炔酰胺/炔醚的交叉偶联/[3,3]-硫鎓离子重排串联策略构筑四取代呋喃[J]. 有机化学, 2024, 44(7): 2274-2285.
Shuyu Meng, Wentao Guo, Quanrui Wang. Cascade Cross-Coupling/[3,3]-Sulfonium Rearrangement of Alkynyl Sulfoxides and Ynamides/Ynol Ethers to Construct Tetrasubstituted Furans[J]. Chinese Journal of Organic Chemistry, 2024, 44(7): 2274-2285.
Entry | Variation from standard conditions | Conv. 4ab/% |
---|---|---|
1 | None | 58 (51)c |
2 | With 2.0 equiv. of ynamide 1a | 58 |
3 | With 20 mol% BF3•OEt2 | 31 |
4 | With 50 mol% BF3•OEt2 | 50 |
5 | r.t. o/n instead of 70 ℃ | 51 (43)c |
6 | 1.0 equiv. of TfOH/AuCl3/AgSbF6 | 47/18/13 |
7 | BF3•OEt2 added via a syringe pump | 25 |
Entry | Variation from standard conditions | Conv. 4ab/% |
---|---|---|
1 | None | 58 (51)c |
2 | With 2.0 equiv. of ynamide 1a | 58 |
3 | With 20 mol% BF3•OEt2 | 31 |
4 | With 50 mol% BF3•OEt2 | 50 |
5 | r.t. o/n instead of 70 ℃ | 51 (43)c |
6 | 1.0 equiv. of TfOH/AuCl3/AgSbF6 | 47/18/13 |
7 | BF3•OEt2 added via a syringe pump | 25 |
Entry | Variation from standard conditions | Conv. 5ab/% |
---|---|---|
1 | None | 49 (44)c |
2 | With 1.5 equiv. of ynol ether 2a | 30 (23)c |
3 | With 3.0 equiv. of ynol ether 2a | 45 |
4 | With 20 mol% BF3•OEt2 | 15 |
5 | r.t. o/n instead of 70 ℃ | 39 |
6 | 1.0 equiv. of TfOH | 38 |
7 | BF3•OEt2 added via a syringe pump | 33 |
Entry | Variation from standard conditions | Conv. 5ab/% |
---|---|---|
1 | None | 49 (44)c |
2 | With 1.5 equiv. of ynol ether 2a | 30 (23)c |
3 | With 3.0 equiv. of ynol ether 2a | 45 |
4 | With 20 mol% BF3•OEt2 | 15 |
5 | r.t. o/n instead of 70 ℃ | 39 |
6 | 1.0 equiv. of TfOH | 38 |
7 | BF3•OEt2 added via a syringe pump | 33 |
[1] |
(a) Brown, R. C. D. Angew. Chem., Int. Ed. 2005, 44, 850.
pmid: 23061605 |
(b) Sperry, J. B.; Wright, D. L. Curr. Opin. Drug Discovery Dev. 2005, 8, 723.
pmid: 23061605 |
|
(c) Wong, H. N. C.; Hou, X. L.; Yeung, K. S.; Huang, H. In Five-Membered Heterocycles: Furan, Eds.: Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J., Wiley-VCH, 2011.
pmid: 23061605 |
|
(d) Keay, B. A.; Hopkins, J. M.; Dibble, P. W. Furans and Their Benzo Derivatives: Applications. In Comprehensive Heterocyclic Chemistry III, Eds.: Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Elsevier, Amsterdam, 2008.
pmid: 23061605 |
|
(e) Peterson, L. A. Drug Metab. Rev. 2006, 38, 615.
pmid: 23061605 |
|
(f) Peterson, L. A. Chem. Res. Toxicol. 2013, 26, 6.
doi: 10.1021/tx3003824 pmid: 23061605 |
|
(g) Tian, M.; Peng, Y.; Zheng, J. Drug Metab. Dispos. 2022, 50, 655.
pmid: 23061605 |
|
[2] |
(a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955.
|
(b) Deepthi, A.; Babu, B. P.; Balachandran, A. L. Org. Prep. Proced. Int. 2019, 51, 409.
|
|
(c) Duc, D. X. Mini-Rev. Org. Chem. 2019, 16, 422.
|
|
(d) Heravi, M. M.; Zadsirjan, V. Adv. Heterocycl. Chem. 2015, 117, 261.
|
|
(e) Li, Y.; Cheng, L.; Chen, L.; Li, B.; Sun, N.; Qing, N. Chin. J. Org. Chem. 2016, 36, 2426. (in Chinese)
|
|
(李亦彪, 程亮, 陈路, 李滨, 孙宁, 卿宁, 有机化学, 2016, 36, 2426.)
doi: 10.6023/cjoc201603029 |
|
(f) Zhang, W.; Xu, W.; Zhang, F.; Li, Y. Chin. J. Org. Chem. 2019, 39, 1277. (in Chinese)
|
|
(张文生, 许文静, 张斐, 李焱, 有机化学, 2019, 39, 1277.)
doi: 10.6023/cjoc201811023 |
|
[3] |
(a) Minetto, G.; Raveglia, L. F.; Taddei, M. Org. Lett. 2004, 6, 389.
|
(b) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem. 2005, 2005, 5277.
|
|
(c) Khaghaninejad, S.; Heravi, M. M. Adv. Heterocycl. Chem. 2014, 111, 95.
|
|
(d) Chen, L.; Du, Y.; Zeng, X.-P.; Shi, T.-D.; Zhou, F.; Zhou, J. Org. Lett. 2015, 17, 1557.
|
|
[4] |
(a) Calter, M. A.; Phillips, R. M.; Flaschenriem, C. J. Am. Chem. Soc. 2005, 127, 14566.
|
(b) Huang, W.-Y.; Chen, Y.-C.; Chen, K. Chem.-Asian J. 2012, 7, 688.
|
|
(c) Ghazvini, M.; Shahvelayati, A. S.; Sabri, A.; Nasrabadi, F. Z. Chem. Heterocycl. Compd. 2016, 52, 161.
|
|
[5] |
(a) Cacchi, S.; Fabrizi, G.; Goggiomani, A. Heterocycles 2002, 56, 613.
pmid: 34704997 |
(b) Cadierno, V.; Crochet, P. Curr. Org. Synth. 2008, 5, 343.
pmid: 34704997 |
|
(c) Moran, W. J.; Rodriguez, A. Org. Prep. Proced. Int. 2012, 44, 103.
pmid: 34704997 |
|
(d) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.
doi: 10.1021/cr300333u pmid: 34704997 |
|
(e) Yu, J.; Sheng, H.-X.; Wang, S.-W.; Xu, Z.-H.; Tang, S.; Chen, S.-L. Chem. Commun. 2019, 55, 4578.
pmid: 34704997 |
|
(f) Miyairi, A.; Oonishi, Y.; Sato, Y. Org. Biomol. Chem. 2021, 19, 9396.
doi: 10.1039/d1ob01910d pmid: 34704997 |
|
(g) Zhang, Z.; Huang, A.; Ma, L.; Xu, J.-H.; Zhang, M. RSC Adv. 2022, 12, 15190.
pmid: 34704997 |
|
(h) Fernandes, R.; Mhaske, K.; Narayan, R. Tetrahedron 2022, 103, 132553.
pmid: 34704997 |
|
[6] |
(a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076.
|
(b) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
|
|
(c) Yuan, Y.; Tan, H.; Kong, L.; Zheng, Z.; Xu, M.; Huang, J.; Li, Y. Org. Biomol. Chem. 2019, 17, 2725.
|
|
(d) You, C.; Zhang, Z.; Tu, Y.; Tang, H.; Wang, Y.; Long, D.; Zhao, J. J. Org. Chem. 2020, 85, 3902.
|
|
(e) Cai, S.-Z.; Ge, D.; Sun, L.-W.; Rao, W.; Wang, X.; Shen, Z.-L.; Chu, X.-Q. Green Chem. 2021, 23, 935.
|
|
[7] |
(a) Cao, H.; Jiang, H.; Yao, W.; Liu, X. Org. Lett. 2009, 11, 1931.
pmid: 24923582 |
(b) Mothe, S. R.; Lauw, S. J. L.; Kothandaraman, P.; Chan, P. W. H. J. Org. Chem. 2012, 77, 6937.
pmid: 24923582 |
|
(c) He, X.; Tang, Y.; Wang, Y.; Chen, J. B.; Xu, S.; Dou, J.; Li, Y. Angew. Chem., Int. Ed. 2019, 58, 10698.
pmid: 24923582 |
|
(d) Kondoh, A.; Aita, K.; Ishikawa, S.; Terada, M. Org. Lett. 2020, 22, 2105.
doi: 10.1021/acs.orglett.0c00619 pmid: 24923582 |
|
(e) Kobatake, T.; Fujino, D.; Yoshida, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2010, 132, 11838.
pmid: 24923582 |
|
(f) Murakami, K.; Yorimitsu, H.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 7510.
doi: 10.1002/anie.201403288 pmid: 24923582 |
|
(g) Haut, F. L.; Habiger, C.; Wein, L. A.; Wurst, K.; Podewitz, M.; Magauer, T. J. Am. Chem. Soc. 2021, 143, 1216.
pmid: 24923582 |
|
(h) Kosack, S.; Himbert, G. Chem. Ber. 1987, 120, 71.
pmid: 24923582 |
|
[8] |
(a) Huang, X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510.
pmid: 24740762 |
(b) Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
doi: 10.1002/anie.201402229 pmid: 24740762 |
|
(c) Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; González, L.; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 2212.
pmid: 24740762 |
|
(d) Kaldre, D.; Klose, I.; Maulide, N. Science 2018, 361, 664.
pmid: 24740762 |
|
[9] |
March, J.Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed., John Wiley & Sons, New York, 1985.
|
[10] |
(a) Zou, Y.; Ding, C.; Zhou, L.; Li, Z.; Wang, Q.; Schoenebeck, F.; Goeke, A. Angew. Chem., Int. Ed. 2012, 51, 5647.
|
(b) Zhou, L.; Li, Z.; Zou, Y.; Wang, Q.; Sanhueza, I. A.; Schoenebeck, F.; Goeke, A. J. Am. Chem. Soc. 2012, 134, 20009.
|
|
(c) Liu, J.; Hürlimann, V.; Emter, R.; Natsch, A.; Esposito, C.; Linker, S. M.; Zou, Y.; Zhou, L.; Wang, Q.; Riniker, S.; Kraft, P. Synlett 2020, 31, 972.
|
|
(d) Liu, J.; Zhou, L.; Zou, Y.; Wang, Q.; Goeke, A. Org. Biomol. Chem. 2020, 18, 7832.
|
|
[11] |
Meng, S.; Wang, Y.; Liu, J.; Zheng, J.; Qian, X.; Wang, Q. Org. Lett. 2022, 24, 757.
|
[12] |
Zeng, X.; Tu, Y.; Zhang, Z.; You, C.; Wu, J.; Ye, Z.; Zhao, J. J. Org. Chem. 2019, 84, 4458.
|
[13] |
Wender, P. A.; Ebner, C.; Fennell, B. D.; Inagaki, F.; Schröder, B. Org. Lett. 2017, 19, 5810.
doi: 10.1021/acs.orglett.7b02765 pmid: 29034684 |
[14] |
DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
doi: 10.1021/cr100003s pmid: 20429503 |
[15] |
Gray, V. J.; Wilden, J. D. Org. Biomol. Chem. 2016, 14, 9695.
|
[16] |
Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1994, 42, 2032.
|
[17] |
(a) Baralle, A.; Otsuka, S.; Guérin, V.; Murakami, K.; Yorimitsu, H.; Osuka, A. Synlett 2015, 26, 327.
|
(b) Gao, K.; Otsuka, S.; Baralle, A.; Nogi, K.; Yorimitsu, H.; Osuka, A. J. Synth. Org. Chem., Jpn. 2016, 74, 1119.
|
[1] | 刘雯娟, 陈品红. 钯催化1,6-烯炔的环化反应研究[J]. 有机化学, 2024, 44(7): 2077-2091. |
[2] | 王文贵, 王守锋. 水溶液中的Minisci反应研究进展[J]. 有机化学, 2024, 44(7): 2136-2146. |
[3] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[4] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[5] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[6] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[7] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[8] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[9] | 曾成富, 何媛, 李清, 董琳. Ir(III)催化新型三组分串联三氟乙氧基化反应并一锅法构建复杂酰胺化合物[J]. 有机化学, 2023, 43(3): 1115-1123. |
[10] | 郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074. |
[11] | 李硕, 王明亮, 周来运, 王兰芝. 磁性纳米负载对甲苯磺酸催化串联合成稠合多环的1,5-苯并氧氮杂䓬类化合物[J]. 有机化学, 2023, 43(11): 3977-3988. |
[12] | 石云, 肖婷, 夏冬, 杨文超. 三氟甲硫基自由基引发不饱和烃的串联反应[J]. 有机化学, 2022, 42(9): 2715-2727. |
[13] | 赵晓正, 凌琴琴, 曹桂妍, 火星, 赵小龙, 苏瀛鹏. 炔丙醇类化合物参与的环化反应研究进展[J]. 有机化学, 2022, 42(9): 2605-2639. |
[14] | 高秋珊, 李蒙, 伍婉卿. 过渡金属催化的异腈插入反应研究进展[J]. 有机化学, 2022, 42(9): 2659-2681. |
[15] | 于帮魁, 黄汉民. 碳-杂原子键复分解反应的研究进展[J]. 有机化学, 2022, 42(8): 2376-2389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||