有机化学 ›› 2024, Vol. 44 ›› Issue (10): 3147-3158.DOI: 10.6023/cjoc202405034 上一篇 下一篇
综述与进展
收稿日期:
2024-05-25
修回日期:
2024-07-06
发布日期:
2024-08-16
通讯作者:
贾肖飞
基金资助:
Received:
2024-05-25
Revised:
2024-07-06
Published:
2024-08-16
Contact:
Xiaofei Jia
Supported by:
文章分享
氢甲酰化反应是工业上合成醛的重要方法之一. 醛进一步通过有机反应转化为缩醛、醇、胺和羧酸等多种精细化学品. 随着绿色化学的发展, 非均相催化剂由于分离和循环使用等优势而引起广泛的关注. 另外, 基于氢甲酰化的串联反应能够“一锅法”得到醛的衍生物, 不需要分离中间体醛, 减少反应步骤和能量消耗, 进而有效地提高了催化效率. 因此, 结合非均相催化和串联反应的理念, 发展非均相的氢甲酰化串联反应催化剂具有重要的研究价值. 此综述总结了非均相氢甲酰化-缩醛化、氢甲酰化-氢化、氢胺甲基化和氢甲酰化-Aldol四类串联反应的研究进展, 介绍了催化剂的合成及应用. 最后, 对催化剂的发展和反应方向进了展望.
周宇飞, 贾肖飞. 非均相催化氢甲酰化的串联反应研究进展[J]. 有机化学, 2024, 44(10): 3147-3158.
Yufei Zhou, Xiaofei Jia. Progress in Heterogeneous Catalyzed Tandem Reactions Based on Hydroformylation[J]. Chinese Journal of Organic Chemistry, 2024, 44(10): 3147-3158.
Entry | Catalyst | Substrate | Reaction condition | Yield/% | n∶i | Ref. |
---|---|---|---|---|---|---|
1 | Rh-[L1•H][BF4] | 1-Octene, CH3OH | [bmim][BF4], p(H2/CO, V/V=1/1)=5.0 MPa, 80 ℃, 2 h, S/C=1000 | 91 | 3.0 | [ |
2 | Ru3(CO)12 | 1-Octene, glycol | [bmim][BF4], HOAc, p(H2/CO, V/V=1/1)=2.0 MPa, 140 ℃, 20 h, S/C=149 | 87 | 1.0 | [ |
3 | Rh(acac)(CO)2/L2 | 1-Octene, CH3OH | [bmim][BF4], p(H2/CO, V/V=1/1)=4.0 MPa, 120 ℃, 2 h, S/C=2000 | 82 | 1.9 | [ |
4 | [Ir(COD)Cl]2/L2 | 1-Octene, CH3OH | NMP, p(H2/CO, V/V=1/4)=4.0 MPa, 120 ℃, 8 h, S/C=200 | 84 | 3.9 | [ |
5 | Rh(acac)(CO)2/ dppb-Q | 1-Octene, CH3OH | dppb-DQ, p(H2/CO, V/V=1/1)=4.0 MPa, 100 ℃, 3 h, S/C=1000 | 92 | 1.2 | [ |
6 | L3-IrCl3•3H2O | 1-Hexene, CH3OH | [Bmim]PF6, p(H2/CO, V/V=1/5)=4.0 MPa, 110 ℃, 15 h, S/C=500 | 89 | 3.5 | [ |
7 | RhCl3/TPPTS | Ethylene, glycol | Toluene/H2O, H2SO4, p(H2/CO, V/V=1/1)=6.0 MPa, 90 ℃, 2 h, S/C=1611 | 89 | — | [ |
8 | Rh32MCM-M | Styrene, CH3OH | H3PW12O40, p(H2/CO, V/V=1/5)=4.1 MPa, 80 ℃, 6 h, S/C=847 | 77 | 1∶7 | [ |
9 | Rh/SiO2 | 1-Hexene, CH3OH | p(H2/CO, V/V=1/1)=4.0 MPa, 120 ℃, 8 h, S/C=575 | 95 | 0.8 | [ |
10 | Rh@ZrP | Styrene, glycol | p(H2/CO, V/V=1/1)=3.0 MPa, 80 ℃, 6 h, S/C=247 | 99 | 1.9 | [ |
11 | Rh/POP-BINAPa& PPh3@ZSM-35(10) | 1-Hexene, CH3OH | p(H2/CO, V/V=1/1)=2.0 MPa, 120 ℃, 24 h, S/C=10000 | 97 | 87.8 | [ |
12 | Cat.1 | Styrene, CH3OH | p(H2/CO, V/V=1/1)=0.8 MPa, 80 ℃, 16 h, S/C=200 | 87 | 0.18 | [ |
13 | IRA900/TPPMS/Rh | Eugenol, CH3OH | p(H2/CO, V/V=1/1)=6.0 MPa, 70 ℃, 24 h, S/C=556 | 89 | 1.6 | [ |
Entry | Catalyst | Substrate | Reaction condition | Yield/% | n∶i | Ref. |
---|---|---|---|---|---|---|
1 | Rh-[L1•H][BF4] | 1-Octene, CH3OH | [bmim][BF4], p(H2/CO, V/V=1/1)=5.0 MPa, 80 ℃, 2 h, S/C=1000 | 91 | 3.0 | [ |
2 | Ru3(CO)12 | 1-Octene, glycol | [bmim][BF4], HOAc, p(H2/CO, V/V=1/1)=2.0 MPa, 140 ℃, 20 h, S/C=149 | 87 | 1.0 | [ |
3 | Rh(acac)(CO)2/L2 | 1-Octene, CH3OH | [bmim][BF4], p(H2/CO, V/V=1/1)=4.0 MPa, 120 ℃, 2 h, S/C=2000 | 82 | 1.9 | [ |
4 | [Ir(COD)Cl]2/L2 | 1-Octene, CH3OH | NMP, p(H2/CO, V/V=1/4)=4.0 MPa, 120 ℃, 8 h, S/C=200 | 84 | 3.9 | [ |
5 | Rh(acac)(CO)2/ dppb-Q | 1-Octene, CH3OH | dppb-DQ, p(H2/CO, V/V=1/1)=4.0 MPa, 100 ℃, 3 h, S/C=1000 | 92 | 1.2 | [ |
6 | L3-IrCl3•3H2O | 1-Hexene, CH3OH | [Bmim]PF6, p(H2/CO, V/V=1/5)=4.0 MPa, 110 ℃, 15 h, S/C=500 | 89 | 3.5 | [ |
7 | RhCl3/TPPTS | Ethylene, glycol | Toluene/H2O, H2SO4, p(H2/CO, V/V=1/1)=6.0 MPa, 90 ℃, 2 h, S/C=1611 | 89 | — | [ |
8 | Rh32MCM-M | Styrene, CH3OH | H3PW12O40, p(H2/CO, V/V=1/5)=4.1 MPa, 80 ℃, 6 h, S/C=847 | 77 | 1∶7 | [ |
9 | Rh/SiO2 | 1-Hexene, CH3OH | p(H2/CO, V/V=1/1)=4.0 MPa, 120 ℃, 8 h, S/C=575 | 95 | 0.8 | [ |
10 | Rh@ZrP | Styrene, glycol | p(H2/CO, V/V=1/1)=3.0 MPa, 80 ℃, 6 h, S/C=247 | 99 | 1.9 | [ |
11 | Rh/POP-BINAPa& PPh3@ZSM-35(10) | 1-Hexene, CH3OH | p(H2/CO, V/V=1/1)=2.0 MPa, 120 ℃, 24 h, S/C=10000 | 97 | 87.8 | [ |
12 | Cat.1 | Styrene, CH3OH | p(H2/CO, V/V=1/1)=0.8 MPa, 80 ℃, 16 h, S/C=200 | 87 | 0.18 | [ |
13 | IRA900/TPPMS/Rh | Eugenol, CH3OH | p(H2/CO, V/V=1/1)=6.0 MPa, 70 ℃, 24 h, S/C=556 | 89 | 1.6 | [ |
Entry | Catalyst | Substrate | Reaction condition | Yield/% | n∶i | Ref. |
---|---|---|---|---|---|---|
1 | Rh/MWA-1 | Dicyclopentadiene | Toluene/THF (V/V=5/1), p(H2/CO, V/V=2/1)=27.6 MPa, 130 ℃, S/C=405 | 94 | — | [ |
2 | Rh/Co/MWA-1 | 1-Hexene | Toluene, p(H2/CO, V/V=1/1)=5 MPa, 100 ℃, 17 h, S/CRh=447 | 99 | 1.1 | [ |
3 | CO2Rh2(CO)12-Al2O3 | 1-Hexene | Toluene, Et3N, p(H2/CO, V/V=1/1)=5 MPa, 100 ℃, 17 h, S/C=296 | 97 | 0.9 | [ |
4 | Au/Co3O4 | Dicyclopentadiene | THF, PPh3, p(H2/CO, V/V=1/1)=7~9 MPa, 140 ℃, 6 h | 90 | — | [ |
5 | Co3O4 | 1-Octene | THF, Et3N, p(H2/CO, V/V=2/1)=5.5 MPa, 150 ℃, 12 h, S/C=16.7 | 93 | 2.3 | [ |
6 | Au/Cs-Co3O4 | 1-Octene | THF, p(H2/CO, V/V=1/2)=4 MPa, 140 ℃, 16 h | 87 | 2.3 | [ |
7 | Rh/BP-1-NMe2 | 1-Octene | Toluene, p(H2/CO, V/V=3/1)=6 MPa, 80 ℃, 12 h, S/C=600 | 92 | 1 | [ |
8 | Rh-Co/g-CN | Styrene | Toluene, p(H2/CO, V/V=1/1)=6 MPa, 100~170 ℃, 16 h, S/CRh=2871 | 89 | 0.9 | [ |
9 | Rh/(CH2CH2OH)3N | 1-Hexene | Dodecane, p(H2/CO, V/V=1/1,)=6 MPa, 90 ℃, 8 h, S/CRh=500. | 42 | 1.2 | [ |
10 | Rh/DMAE | 1-Octene | H2O, p(H2/CO, V/V=1/2)=6 MPa, 100 ℃, 1.5 h, S/C=200 | 64 | — | [ |
Entry | Catalyst | Substrate | Reaction condition | Yield/% | n∶i | Ref. |
---|---|---|---|---|---|---|
1 | Rh/MWA-1 | Dicyclopentadiene | Toluene/THF (V/V=5/1), p(H2/CO, V/V=2/1)=27.6 MPa, 130 ℃, S/C=405 | 94 | — | [ |
2 | Rh/Co/MWA-1 | 1-Hexene | Toluene, p(H2/CO, V/V=1/1)=5 MPa, 100 ℃, 17 h, S/CRh=447 | 99 | 1.1 | [ |
3 | CO2Rh2(CO)12-Al2O3 | 1-Hexene | Toluene, Et3N, p(H2/CO, V/V=1/1)=5 MPa, 100 ℃, 17 h, S/C=296 | 97 | 0.9 | [ |
4 | Au/Co3O4 | Dicyclopentadiene | THF, PPh3, p(H2/CO, V/V=1/1)=7~9 MPa, 140 ℃, 6 h | 90 | — | [ |
5 | Co3O4 | 1-Octene | THF, Et3N, p(H2/CO, V/V=2/1)=5.5 MPa, 150 ℃, 12 h, S/C=16.7 | 93 | 2.3 | [ |
6 | Au/Cs-Co3O4 | 1-Octene | THF, p(H2/CO, V/V=1/2)=4 MPa, 140 ℃, 16 h | 87 | 2.3 | [ |
7 | Rh/BP-1-NMe2 | 1-Octene | Toluene, p(H2/CO, V/V=3/1)=6 MPa, 80 ℃, 12 h, S/C=600 | 92 | 1 | [ |
8 | Rh-Co/g-CN | Styrene | Toluene, p(H2/CO, V/V=1/1)=6 MPa, 100~170 ℃, 16 h, S/CRh=2871 | 89 | 0.9 | [ |
9 | Rh/(CH2CH2OH)3N | 1-Hexene | Dodecane, p(H2/CO, V/V=1/1,)=6 MPa, 90 ℃, 8 h, S/CRh=500. | 42 | 1.2 | [ |
10 | Rh/DMAE | 1-Octene | H2O, p(H2/CO, V/V=1/2)=6 MPa, 100 ℃, 1.5 h, S/C=200 | 64 | — | [ |
Entry | Catalyst | Substrate | Reaction condition | Yield/% | n∶i | Ref. |
---|---|---|---|---|---|---|
1 | Rh/BISBIS | 1-Octene, morpholine | [BMIM][p-CH3C6H4SO3], p(H2/CO, V/V=1∶1)=3.0 MPa, 130 ℃, 5 h, S/C=500 | 81 | 21.4 | [ |
2 | Rh/sulfoxantphos | 1-Octene, piperidine | [PMIM][BF4], p(H2/CO, V/V=1∶2)=3.6 MPa, 125 ℃, 17 h, S/C=4000 | 92 | 27.7 | [ |
3 | Rh/Ir/BINAS | Acrylic, NH3•H2O | MTBE/H2O, p(H2/CO, V/V=5∶1)=7.8 MPa, 130 ℃, 10 h, S/CRh=3846, S/CIr=476 | 90 | 99 | [ |
4 | Rh/TPPTS | 1-Octene, dimethylamine | H2O, CTAB, p(H2/CO, V/V=1∶1)=3 MPa, 130 ℃, 5 h | 41 | 9.6 | [ |
5 | Rh/BISBIS | Dodecene, dimethylamine | H2O, CTAB, p(H2/CO, V/V=1∶1)=3 MPa, 130 ℃, 5 h | 78.4 | 70.3 | [ |
6 | Rh/Sulfoxantphos | 1-Octene, diethanolamine | 1-BuOH/H2O, p(H2/CO, V/V=3∶1)=5 MPa, 100 ℃, 8 h, S/C=769 | 79 | — | [ |
7 | Rh/TPPTS/ RAME-β-CD | Eugenol, cyclohexylamine | H2O, p(H2/CO, V/V=3∶1)=3 MPa, 80 ℃, 6 h, S/C=500 | 81 | 9 | [ |
8 | Rh/L4 | Styrene, aniline | H2O, p(H2/CO, V/V=3∶1)=3 MPa, 60 ℃, 24 h, S/C=200 | 82 | 0.01 | [ |
9 | Rh/MNP-NHC | Styrene, morpholine | CH2Cl2, p(H2/CO, V/V=1∶1)=6.9 MPa, 80 ℃, 16 h, S/C=500 | 98 | 0.06 | [ |
10 | Ru/TiO2 | Cyclohexene, cyclohexylamine | THF, p(H2/CO, V/V=1/1)=1.0 MPa, 160 ℃, 12 h, S/CRh=51 | 85 | — | [ |
11 | Rh@CPOL-DPMphos&p-3vPPh3 | 1-Octene, N-methylaniline | CH3OH, TsOH•H2O, P (H2/CO, V/V=1/1)=2.0 MPa, 120 ℃, 24 h, S/C=1000 | 90 | 5.7 | [ |
12 | NHC-Rh | Phenylpropene, N-methylaniline | THF, P (H2/CO, V/V=9/1)=8.0 MPa, 150 ℃, 18 h, S/C=100 | 95 | 32.3 | [ |
Entry | Catalyst | Substrate | Reaction condition | Yield/% | n∶i | Ref. |
---|---|---|---|---|---|---|
1 | Rh/BISBIS | 1-Octene, morpholine | [BMIM][p-CH3C6H4SO3], p(H2/CO, V/V=1∶1)=3.0 MPa, 130 ℃, 5 h, S/C=500 | 81 | 21.4 | [ |
2 | Rh/sulfoxantphos | 1-Octene, piperidine | [PMIM][BF4], p(H2/CO, V/V=1∶2)=3.6 MPa, 125 ℃, 17 h, S/C=4000 | 92 | 27.7 | [ |
3 | Rh/Ir/BINAS | Acrylic, NH3•H2O | MTBE/H2O, p(H2/CO, V/V=5∶1)=7.8 MPa, 130 ℃, 10 h, S/CRh=3846, S/CIr=476 | 90 | 99 | [ |
4 | Rh/TPPTS | 1-Octene, dimethylamine | H2O, CTAB, p(H2/CO, V/V=1∶1)=3 MPa, 130 ℃, 5 h | 41 | 9.6 | [ |
5 | Rh/BISBIS | Dodecene, dimethylamine | H2O, CTAB, p(H2/CO, V/V=1∶1)=3 MPa, 130 ℃, 5 h | 78.4 | 70.3 | [ |
6 | Rh/Sulfoxantphos | 1-Octene, diethanolamine | 1-BuOH/H2O, p(H2/CO, V/V=3∶1)=5 MPa, 100 ℃, 8 h, S/C=769 | 79 | — | [ |
7 | Rh/TPPTS/ RAME-β-CD | Eugenol, cyclohexylamine | H2O, p(H2/CO, V/V=3∶1)=3 MPa, 80 ℃, 6 h, S/C=500 | 81 | 9 | [ |
8 | Rh/L4 | Styrene, aniline | H2O, p(H2/CO, V/V=3∶1)=3 MPa, 60 ℃, 24 h, S/C=200 | 82 | 0.01 | [ |
9 | Rh/MNP-NHC | Styrene, morpholine | CH2Cl2, p(H2/CO, V/V=1∶1)=6.9 MPa, 80 ℃, 16 h, S/C=500 | 98 | 0.06 | [ |
10 | Ru/TiO2 | Cyclohexene, cyclohexylamine | THF, p(H2/CO, V/V=1/1)=1.0 MPa, 160 ℃, 12 h, S/CRh=51 | 85 | — | [ |
11 | Rh@CPOL-DPMphos&p-3vPPh3 | 1-Octene, N-methylaniline | CH3OH, TsOH•H2O, P (H2/CO, V/V=1/1)=2.0 MPa, 120 ℃, 24 h, S/C=1000 | 90 | 5.7 | [ |
12 | NHC-Rh | Phenylpropene, N-methylaniline | THF, P (H2/CO, V/V=9/1)=8.0 MPa, 150 ℃, 18 h, S/C=100 | 95 | 32.3 | [ |
[1] |
Roelen, O. DE 849548, 1938.
|
[2] |
(a) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675.
|
(b) Zhao, K.; Wang, X.; He, D.; Wang, H.; Qian, B.; Shi, F. Catal. Sci. Technol. 2022, 12, 4962.
|
|
(c) Chakrabortty, S.; Almasalma, A. A.; de Vries, J. G. Catal. Sci. Technol. 2021, 11, 5388.
|
|
(d) Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 2852.
|
|
(e) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2013, 33, 1369. (in Chinese)
|
|
(贾肖飞, 王正, 夏春谷, 丁奎岭, 有机化学, 2013, 33, 1369.)
|
|
(f) Li, S.; Li, Z.; You, C.; Lv, H.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 1568. (in Chinese)
|
|
(李帅龙, 李庄星, 由才, 吕辉, 张绪穆, 有机化学, 2019, 39, 1568.)
|
|
(g) Zhang, J.; Sun, P.; Gao, G.; Wang, J.; Zhao, Z.; Muhammad, Y.; Li, F. J. Catal. 2020, 387, 196.
|
|
[3] |
(a) Bondžić, B. P. J. Mol. Catal. A: Chem. 2015, 408, 310.
|
(b) Behr, A.; Vorholt, A. J.; Ostrowski, K. A.; Seidensticker, T. Green Chem. 2014, 16, 982.
|
|
(c) Vasylyev, M.; Alper, H. Synthesis 2010, 17, 2893.
|
|
(d) Rodrigues, F. M. S.; Carrilho, R. M. B.; Pereira, M. M. Eur. J. Inorg. Chem. 2021, 24, 2294.
|
|
(e) Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos- Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A. Chem. Rev. 1999, 99, 3329.
|
|
[4] |
(a) Gao, W.; Liu, S.; Wang, Z.; Peng, J.; Zhang, Y.; Yuan, X.; Zhang, X.; Li, Y.; Pan, Y. Energy Fuels 2024, 38, 2526.
|
(b) Liu, B.; Wang, Y.; Huang, N.; Lan, X.; Xie, Z.; Chen, J. G.; Wang, T. Chem 2022, 8, 2630.
|
|
(c) Zong, L.; Chen, J.; Ren, X.; Zhang, G.; Jia, X. Chin. J. Org. Chem. 2020, 40, 2308. (in Chinese)
|
|
(宗玲博, 陈建宾, 任新意, 张国营, 贾肖飞, 有机化学, 2020, 40, 2308.)
|
|
(d) Nurttila, S. S.; Linnebank, P. R.; Krachko, T.; Reek, J. N. H. ACS Catal. 2018, 8, 3469.
|
|
(e) Li, C. Y.; Wang, W. L.; Yan, L.; Ding, Y. J. Front. Chem. Sci. Eng. 2018, 12, 113.
|
|
[5] |
Torres, G. M.; Frauenlob, R.; Franke, R.; Börner, A. Catal. Sci. Technol. 2015, 5, 34.
|
[6] |
(a) Kalck, P.; Urrutigoïty, M. Chem. Rev. 2018, 118, 3833.
|
(b) Chen, C.; Dong, X.-Q.; Zhang, X. Org. Chem. Front. 2016, 3, 1359.
|
|
(c) Crozet, D.; Urrutigoty, M.; Kalck, P. ChemCatChem 2011, 3, 1102.
|
|
(d) Monciatti, E.; Migliorini, F.; Romagnoli, G.; Vogt, M.; Langer, R.; Parisi, M. L.; Petricci, E. ACS Sustainable Chem. Eng. 2023, 11, 13387.
|
|
[7] |
(a) Gäumann, P.; Rohrbach, T.; Artiglia, L.; Ongari, D.; Smit, B.; van Bokhoven, J. A.; Ranocchiari, M. Chem. Eur. J. 2023, 6, e202300939.
|
(b) Fang, X.; Jackstell, R.; Börner, A.; Beller, M. Chem. Eur. J. 2014, 20, 15692.
|
|
[8] |
Chercheja, S.; Rothenbücher, T.; Eilbracht, P. Adv. Synth. Catal. 2009, 351, 339.
|
[9] |
Fuchs, D.; Nasr-Esfahani, M.; Diab, L.; Šmejkal, T.; Breit, B. Synlett 2013, 24, 1657.
|
[10] |
(a) Climent, M. J.; Velty, A.; Corma, A. Green Chem. 2002, 4, 565.
|
(b) Gorbunov, D. N.; Shchukina, T. V.; Kardasheva, Y. S.; Sinikova, N. A.; Maksimov, A. L.; Karakhanov, E. A. Pet. Chem. 2016, 56, 711.
|
|
(c) Shu, Z.; Zhao, X.-X.; Zheng, Z.; Zhang, X.; Zhang, Y.; Sun, S.; Chen, J.; Xie, C.; Yuan, B.; Jia, X. Chem. Commun. 2023, 59, 5237.
|
|
[11] |
Jin, X.; Zhao, K.; Cui, F.; Kong, F.; Liu, Q. Green Chem. 2013, 15, 3236.
|
[12] |
Norinder, J.; Rodrigues, C.; Börner, A. J. Mol. Catal. A: Chem. 2014, 391, 139.
|
[13] |
(a) Li, Y.-Q.; Wang, P.; Liu, H.; Lu, Y.; Zhao, X.-L.; Liu, Y. Green Chem. 2016, 18, 1798.
|
(b) Yang, D.; Zhang, L.; Liu, H.; Yang, C. Acta Chim. Sinica 2021, 79, 658. (in Chinese)
|
|
(杨妲, 张龙力, 刘欢, 杨朝合, 化学学报, 2021, 79, 658.)
|
|
[14] |
Wang, P.; Chen, X.; Wang, D.-L.; Li, Y.-Q.; Liu, Y. Green Energy Environ. 2017, 2, 419.
|
[15] |
Liu, H.; Liu, L.; Guo, W.-D.; Lu, Y.; Zhao, X.-L.; Liu, Y. J. Catal. 2019, 373, 215.
|
[16] |
(a) Gorbunov, D.; Nenasheva, M.; Gorbunov, A.; Matsukevich, R.; Maximov, A.; Karakhanov, E. React. Chem. Eng. 2021, 6, 839.
|
(b) Gorbunov, D. N.; Nenasheva, M. V.; Sinikova, N. A.; Kardasheva, Y. S.; Maksimov, A. L.; Karakhanov, E. A. Russ. J. Appl. Chem. 2018, 91, 990.
|
|
[17] |
Ali, B. E.; Tijani, J.; Fettouhi, M. Appl. Catal. A 2006, 303, 213.
|
[18] |
Li, X.; Qin, T.; Li, L.; Wu, B.; Lin, T.; Zhong, L. Catal. Lett. 2021, 151, 2638.
|
[19] |
Singh, A. S.; Kachgunde, H. G.; Ravi, K.; Naikwadi, D. R.; Biradar, A. V. Mol. Catal. 2024, 555, 113859.
|
[20] |
(a) Liang, Z.; Chen, J.; Chen, X.; Zhang, K.; Lv, J.; Zhao, H.; Zhang, G.; Xie, C.; Zong, L.; Jia, X. Chem. Commun. 2019, 55, 13721.
|
(b) Jia, X.; Liang, Z.; Chen, J.; Lv, J.; Zhang, K.; Gao, M.; Zong, L.; Xie, C. Org. Lett. 2019, 21, 2147.
|
|
(c) Zhang, J.; Li, J.; Li, K.; Zhao, J.; Yang, Z.; Zong, L.; Chen, J.; Xie, C.-X.; Zhao, X.-X.; Jia, X. Catal. Sci. Technol. 2022, 12, 3440.
|
|
[21] |
Shu, Z.; Zhang, X.; Meng, W.; Yu, Z.; Zhou, Y.; Chen, C.; Yuan, B.; Jia, X. ACS Sustainable Chem. Eng. 2024, 12, 2430.
|
[22] |
Balué, J.; Bayón, J. C. J. Mol. Catal. A: Chem. 1999, 137, 193.
|
[23] |
Carvalho, G. A.; Gusevskaya, E. V.; dos Santos, E. N. J. Braz. Chem. Soc. 2014, 25, 2370.
|
[24] |
(a) Hunter, D. L.; Moore, S. E. Appl. Catal. 1985, 19, 259.
|
(b) Hunter, D. L.; Moore, S. E. Appl. Catal. 1985, 19, 275.
|
|
[25] |
Alvila, L.; Pakkanen, T. A.; Pakkanen, T. T. J. Mol. Catal. 1992, 71, 281.
|
[26] |
Corain, B.; Basato, M.; Zecca, M. J. Mol. Catal. 1992, 73, 23.
|
[27] |
Alvila, L.; Pakkanen, T. A.; Pakkanen, T. T. J. Mol. Catal. A: Chem. 1995, 102, 79.
|
[28] |
Ma, Y.; Qing, S.; Gao, Z.; Mamat, X.; Zhang, J.; Li, H.; Eli, W.; Wang, T. Catal. Sci. Technol. 2015, 5, 3649.
|
[29] |
Bhagade, S. S.; Chaurasia, S. R.; Bhanage, B. M. Catal. Today 2018, 309, 147.
|
[30] |
Oseghale, C. O.; Mogudi, B. M.; Akinnawo, C. A.; Meijboom, R.; Appl. Catal. A, Gen. 2020, 602, 117735.
|
[31] |
Gorbunov, D.; Nenasheva, M.; Naranov, E.; Maximov, A.; Rosenberg, E.; Karakhanov, E. Appl. Catal. A, Gen. 2021, 623, 118266.
|
[32] |
Shi, Y.; Li, J.; Shen, X.; Xie, P.; Gong, J.; Sun, H.; Hu, X.; Zhu, B.; Huang, W. ChemPhysChem 2023, 24, e202200910.
|
[33] |
(a) Ahlers, S. J.; Kraehnert, R.; Kreyenschulte, C.; Pohl, M.-M.; Linke, D.; Kondratenko, E. V. Catal. Today 2015, 258, 684.
|
(b) Ahlers, S. J.; Pohl, M.-M.; Radnik, J.; Linke, D.; Kondratenko, E. V. Appl. Catal. B, Environ. 2015, 176-177, 570.
|
|
[34] |
Mavlyankariev, S. A.; Ahlers, S. J.; Kondratenko, V. A.; Linke, D.; Kondratenko, E. V. ACS Catal. 2016, 6, 3317.
|
[35] |
Heyl, D.; Kreyenschulte, C.; Kondratenko, V. A.; Bentrup, U.; Kondratenko, E. V., Brückner, A. ChemSusChem 2019, 12, 651.
|
[36] |
Nenasheva, M.; Gorbunov, D.; Karasaeva, M.; Maximov, A.; Karakhanov, E. Mol. Catal. 2021, 516, 112010.
|
[37] |
Püschel, S.; Hammami, E.; Rösler, T.; Ehmann, K. R.; Vorholt, A. J.; Leitner, W. Catal. Sci. Technol. 2022, 12, 728.
|
[38] |
Wang, Y. Y.; Luo, M. M.; Lin, Q.; Chen, H.; Li, X. J. Green Chem. 2006, 8, 545.
|
[39] |
Hamers, B.; Baeuerlein, P. S.; Muller, C.; Vogt, D. Adv. Synth. Catal. 2008, 350, 332.
|
[40] |
Schneider, M. J.; Lijewski, M.; Woelfel, R.; Haumann, M.; Wasserscheid, P. Angew. Chem., Int. Ed. 2013, 52, 6996.
|
[41] |
Zimmermann, B.; Herwig, J.; Beller, M. Angew. Chem., Int. Ed. 1999, 38, 2372.
|
[42] |
Wang, Y. Y.; Luo, M. M.; Li, Y. Z.; Chen, H.; Li, X. J. Appl. Catal., A 2004, 272, 151.
|
[43] |
Wang, Y. Y.; Chen, J. H.; Luo, M. M.; Chen, H.; Li, X. J. Catal. Commun. 2006, 7, 979.
|
[44] |
Behr, A.; Becker, M.; Reyer, S. Tetrahedron Lett. 2010, 51, 2438.
|
[45] |
Faßbach, T. A.; Sommer, F. O.; Vorholt, A. J. Adv. Synth. Catal. 2018, 360, 1473.
|
[46] |
Jagtap, S. A.; Gowalkar, S. P.; Monflier, E.; Ponchel, A.; Bhanage, B. M. Mol. Catal. 2018, 452, 108.
|
[47] |
Zhang, L.; Ning, Y.; Ye, B.; Ru, T.; Chen, F.-E. Green Chem. 2022, 24, 4420.
|
[48] |
Dutta, B.; Schwarz, R.; Omar, S.; Natour, S.; Abu-Reziq, R. Eur. J. Org. Chem. 2015, 1961.
|
[49] |
An, J.; Gao, Z.; Wang, Y.; Zhang, Z.; Zhang, J.; Li, L.; Tang, B.; Wang, F. Green Chem. 2021, 23, 2722.
|
[50] |
Zhao, K.; Wang, H.; Wang, X.; Cui, X.; Shi, F. Chem. Commun. 2022, 58, 8093.
|
[51] |
Qian, C.; Zheng, Q.; Chen, J.; Tu, B.; Tu, T. Green Chem. 2023, 25, 1368.
|
[52] |
Strohmann, M.; Vossen, J. T.; Vorholt, A. J.; Leitner, W. Green Chem. 2020, 22, 8444.
|
[53] |
(a) Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. Chem 2019, 5, 526.
|
(b) An, D.-L.; Bao, Z.-P.; Wu, X.-F. Chin. J. Org. Chem. 2023, 43, 2304. (in Chinese)
|
|
(安大列, 包志鹏, 吴小锋, 有机化学, 2023, 43, 2304.)
|
|
(c) Liu, Y.; Chen, Y.-H.; Yi, H.; Lei, A. ACS Catal. 2022, 12, 7470.
|
|
(d) Wang, P.; Yang, D.; Liu, H. Chin. J. Org. Chem. 2021, 41, 3379. (in Chinese)
|
|
(王鹏, 杨妲, 刘欢, 有机化学, 2021, 41, 3379.)
|
|
(e) Yang, L.; Shi, L.; Xia, C.; Li, F. Chin. J. Chem. 2020, 41, 1152.
|
|
(f) Shi, L.; Wen, M.; Li, F. Chin. J. Chem. 2020, 39, 317.
|
|
(g) Shi, H.; Wang, Y.; Wang, P.; Zhao, D.; Feng, B.; Yan, Y.; Yang, G. Chin. J. Org. Chem. 2024, 44, 1811. (in Chinese)
|
|
(史会兵, 王耀伟, 王鹏, 赵德明, 冯保林, 晏耀宗, 杨桂爱, 有机化学, 2024, 44, 1811.)
|
|
(h) Yang, Z.; Shen, C.; Dong, K. Chin. J. Chem. 2022, 40, 2734.
|
|
[54] |
Li, X.; You, C.; Yang, J.; Li, S.; Zhang, D.; Lv, H.; Zhang, X. Angew. Chem., Int. Ed. 2019, 58, 10928.
|
[55] |
(a) Chen, C.; Jin, S.; Zhang, Z.; Wei, B.; Wang, H.; Zhang, K.; Lv, H.; Dong, X.-Q.; Zhang, X. J. Am. Chem. Soc. 2016, 138, 9017.
|
(b) Li, S.; Li, Z.; Li, M.; He, L.; Zhang, X.; Lv, H. Nat. Commun. 2021, 12, 5279.
|
|
(c) You, C.; Li, S.; Li, X.; Lv, H.; Zhang, X. ACS Catal. 2019, 9, 8529.
|
|
[56] |
Samanta, P.; Canivet, J. ChemCatChem 2024, 16, e202301435.
|
[57] |
(a) Liu, Y.; Dikhtiarenko, A.; Xu, N.; Sun, Ji.; Tang, J.; Wang, K.; Xu, B.; Tong, Q.; Heeres, H. J.; He, S.; Gascon, J.; Fan, Y. Chem. Eur. J. 2020, 26, 12134.
|
(b) Pilaski, M.; Artz, J.; Islam, H.-U.; Beale, A. M.; Palkovits, R. Microporous Mesoporous Mater. 2016, 227, 219.
|
|
(a) Kramer, S.; Bennedsen, N. R.; Kegnæs, S. ACS Catal. 2018, 8, 6961.
|
|
(b) Kathiresan, M. Chem.-Asian J. 2023, 18, e202201299.
|
|
(c) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018.
|
|
(d) Yue, C.; Xing, Q.; Sun, P.; Zhao, Z.; Lv, H.; Li, F. Nat. Commun. 2021, 12, 1875.
|
|
(e) Lv, H.; Wang, W.; Li, F. Chem. Eur. J. 2018, 24, 16588.
|
[1] | 李建文, 王涛, 陶晟, 陈飞, 李敏, 刘宁. SBA-15负载的N-杂环卡宾-吡啶钼配合物在二氧化碳转化制备环状碳酸酯中的应用[J]. 有机化学, 2024, 44(10): 3213-3222. |
[2] | 宗玲博, 陈建宾, 任新意, 张国营, 贾肖飞. 有机聚合物负载铑催化剂在氢甲酰化反应中的应用研究进展[J]. 有机化学, 2020, 40(8): 2308-2321. |
[3] | 侯亚东, 庞海霞, 杨超, 惠永海. 介孔分子筛MCM-41固载席夫碱与Cu(ClO4)2·6H2O催化合成螺[吲哚-噻唑啉酮]衍生物[J]. 有机化学, 2018, 38(8): 2036-2044. |
[4] | 侯亚东, 董秀芝, 杨超, 惠永海, 解正峰. MCM-41负载杂多酸水相中催化亚胺和丙二腈的加成-消去反应[J]. 有机化学, 2018, 38(7): 1749-1754. |
[5] | 邢刘桩, 侯亚东, 邢雪建, 惠永海. MCM-41@席夫碱-Mn(OAc)2在水相中催化合成氧杂蒽衍生物[J]. 有机化学, 2018, 38(4): 912-918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||