有机化学 ›› 2021, Vol. 41 ›› Issue (3): 1031-1052.DOI: 10.6023/cjoc202008011 上一篇 下一篇
综述与进展
收稿日期:
2020-08-10
修回日期:
2020-09-10
发布日期:
2020-09-30
通讯作者:
胡君, 巨勇
基金资助:
Jinguo Liua, Feng Yina, Jun Hub,*(), Yong Jua,*()
Received:
2020-08-10
Revised:
2020-09-10
Published:
2020-09-30
Contact:
Jun Hu, Yong Ju
About author:
Supported by:
文章分享
超分子手性组装体通常由多种非共价相互作用协同驱动形成, 是一类具有独特手性限域微环境的软物质, 对材料工程、生命科学、光学器件、催化合成等领域的发展具有重要作用. 其主要构建方法分为三种: 手性基元组装、手性因素诱导非手性基元组装、非手性基元对称性破缺组装. 通过分析近年来的研究成果, 归纳了利用这三种方法构建超分子手性组装体的一般策略, 并简要综述了超分子手性组装体在手性模板、手性识别、圆偏振发光及不对称催化领域中的应用进展与亟需弥补的缺陷. 随着研究的深入, 手性传递机制将得到进一步解释, 未来将有助于人们理解生命体内的手性现象, 有望最终解答自然界中的手性起源问题.
刘金果, 殷凤, 胡君, 巨勇. 超分子手性组装体的构建与应用[J]. 有机化学, 2021, 41(3): 1031-1052.
Jinguo Liu, Feng Yin, Jun Hu, Yong Ju. Fabrication and Applications of Supramolecular Chiral Assemblies[J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1031-1052.
[1] |
Cahn, R. S.; Ingold, S. C.; Prelog, V. Angew. Chem. Int. 1966, 5, 385.
|
[2] |
Smith, D. K. Chem. Soc. Rev. 2009, 38, 684.
pmid: 19322462 |
[3] |
Brizard, A.; Oda, R.; Huc, I. Top. Curr. Chem. 2005, 256, 167.
pmid: 22160339 |
[4] |
Simonyi, M.; Bikádi, Z.; Zsila, F.; Deli, J. Chirality 2003, 15, 680.
pmid: 12923806 |
[5] |
Duan, P. F.; Zhu, X. F.; Liu, M. H. Chem. Commun. 2011, 47, 5569.
doi: 10.1039/C1CC10813A |
[6] |
Cu, J. X.; Zheng, Y. J.; Shen, Z. H.; Wan, X. H. Langmuir 2010, 26, 15508.
pmid: 20809603 |
[7] |
Huang, Y. W.; Hu, J. C.; Kuang, W. F.; Wei, Z. X.; Faul, C. F. J. Chem. Commun. 2011, 47, 5554.
|
[8] |
Xie, Y. Y.; Wang, Y. F.; Qi, W.; Huang, R. L.; Su, R. X.; He, Z. M. Small 2017, 13, 17009.
|
[9] |
Cui, J. X.; Liu, A. H.; Guan, Y.; Zheng, J.; Shen, Z. H.; Wan, X. H. Langmuir 2010, 26, 3615.
pmid: 19921782 |
[10] |
Xie, F.; Qin, L.; Liu, M. H. Chem. Commun. 2016, 52, 930.
|
[11] |
Shin, S.; Lim, S.; Kim, Y.; Kim, T.; Choi, T. L.; Lee, M. J. Am. Chem. Soc. 2013, 135, 2156.
pmid: 23356458 |
[12] |
Duan, P. F.; Cao, H.; Zhang, L.; Liu, M. H. Soft Matter 2014, 10, 5428.
doi: 10.1039/c4sm00507d pmid: 24975350 |
[13] |
Barclay, T. G.; Constantopoulos, K.; Matisons, J. Chem. Rev. 2014, 114, 10217.
pmid: 25290622 |
[14] |
Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Chem. Rev. 2015, 115, 13165.
pmid: 26646318 |
[15] |
Zhang, L.; Wang, T. Y.; Shen, Z. C.; Liu, M. H. Adv. Mater. 2016, 28, 1044.
pmid: 26385875 |
[16] |
Gao, Y. X.; Liang, Y.; Hu, J.; Ju, Y. Prog. Chem. 2018, 30, 737. (in Chinese)
|
(高玉霞, 梁云, 胡君, 巨勇, 化学进展, 2018, 30, 737.)
|
|
[17] |
Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Chem. Rev. 2016, 116, 1693.
pmid: 26702928 |
[18] |
Chabre, Y. M.; Roy, R. Chem. Soc. Rev. 2013, 42, 4657.
pmid: 23400414 |
[19] |
Jung, J. H.; John, G.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T. Langmuir 2001, 17, 7229.
|
[20] |
Birchall, L. S.; Roy, S.; Jayawarna, V.; Hughes, M.; Irvine, E.; Okorogheye, G. T.; Saudi, N.; De Santis, E.; Tuttle, T.; Edwards, A. A.; Ulijn, R. V. Chem. Sci. 2011, 2, 1349.
|
[21] |
Wang, K. R. Prog. Chem. 2015, 27, 775. (in Chinese)
|
(王克让, 化学进展, 2015, 57, 775.)
|
|
[22] |
Sun, K.; Xiao, C. Y.; Liu, C. M.; Fu, W. X.; Wang, Z. H.; Li, Z. B. Langmuir 2014, 30, 11040.
pmid: 25166855 |
[23] |
Kobayashi, H.; Friggeri, A.; Koumoto, K.; Amaike, M.; Shinkai, S.; Reinhoudt, D. N. Org. Lett. 2002, 4, 1423.
doi: 10.1021/ol025519+ pmid: 11975594 |
[24] |
Rajaganesh, R.; Gopal, A.; Das, T. M.; Ajayaghosh, A. Org. Lett. 2012, 14, 748.
doi: 10.1021/ol203294v pmid: 22251145 |
[25] |
Ogawa, Y.; Yoshiyama, C.; Kitaoka, T. Langmuir 2012, 28, 4404.
pmid: 22339091 |
[26] |
Fu, I. W.; Markegard, C. B.; Nguyen, H. D. Langmuir 2015, 31, 315.
pmid: 25488898 |
[27] |
Kurouski, D.; Lu, X. F.; Popova, L.; Wan, W.; Shanmugasundaram, M.; Stubbs, G.; Dukor, R. K.; Lednev, I. K.; Nafie, L. A. J. Am. Chem. Soc. 2014, 136, 2302.
pmid: 24484302 |
[28] |
Liu, G. F.; Li, X.; Sheng, J. S.; Li, P. Z.; Ong, W. K.; Phua, S. Z. F.; Ågren, H.; Zhu, L. L.; Zhao, Y. L. ACS Nano 2017, 11, 11880.
doi: 10.1021/acsnano.7b06097 pmid: 29140680 |
[29] |
Wu, X. J.; Ji, S. J.; Li, Y.; Li, B.Z; Zhu, X. L.; Hanabusa, K.; Yang, Y. G. J. Am. Chem. Soc. 2009, 131, 5986.
doi: 10.1021/ja9001376 pmid: 19348460 |
[30] |
Sun, Y.; Li, S.; Zhou, Z. X.; Saha, M. L.; Datta, S.; Zhang, M. M.; Yan, X. Z.; Tian, D. M.; Wang, H.; Wang, L.; Li, X. P.; Liu, M. H.; Li, H. B.; Stang, P. J. J. Am. Chem. Soc. 2018, 140, 3257.
doi: 10.1021/jacs.7b10769 |
[31] |
Cao, H.; Zhu, X. F.; Liu, M. H. Angew. Chem. Int. Ed. 2013, 52, 4122.
|
[32] |
Yuan, Y.; Xiao, Y. W.; Yan, X. S.; Wu, S. X.; Luo, H.; Lin, J. B.; Li, Z.; Jiang, Y. B. Chem. Commun. 2019, 55, 12849.
|
[33] |
Nonappaa; Maitra, U. Org. Biomol. Chem. 2008, 6, 657.
doi: 10.1039/b714475j pmid: 18354842 |
[34] |
Qiao, Y.; Lin, Y. Y.; Wang, Y. J.; Yang, Z. Y.; Liu, J.; Zhou, J.; Yan, Y.; Huang, J. B. Nano Lett. 2009, 9, 4500.
doi: 10.1021/nl9028335 pmid: 19908861 |
[35] |
Konikoff, F. M.; Chung, D. S.; Donovan, J. M.; Small, D. M.; Carey, M. C. J. Clin. Invest. 1992; 90, 1155.
doi: 10.1172/JCI115935 pmid: 1522223 |
[36] |
Abraham, S.; Vijayaraghavan, R. K.; Das, S. Langmuir 2009, 25, 8507.
pmid: 19405484 |
[37] |
Travaglini, L.; D’Annibale, A.; Schillén, K.; Olsson, U.; Sennato, S.; Pavela, N. V.; Galantini, L. Chem. Commun. 2012, 48, 12011.
|
[38] |
Liu, G. F.; Sheng, J. H.; Teo, W. L.; Yang, G. B.; Wu, H. W.; Li, Y. X.; Zhao, Y. L. J. Am. Chem. Soc. 2018, 140, 16275.
pmid: 30403348 |
[39] |
Li, Y.; Li, G. T.; Wang, X. Y.; Li, W. N.; Su, Z. X.; Zhang, Y. H.; Ju, Y. Chem. Eur. J. 2009, 15, 6399.
pmid: 19472246 |
[40] |
Lu, J. R.; Ju, Y. Prog. Chem. 2016, 28, 260. (in Chinese)
|
(卢金荣, 巨勇, 化学进展, 2016, 28, 260.)
|
|
[41] |
Bag, B. G.; Dash, S. S. Nanoscale 2011, 3, 4564.
pmid: 21947431 |
[42] |
Bag, B. G.; Dash, S. S. Langmuir 2015, 31, 13664.
doi: 10.1021/acs.langmuir.5b03730 pmid: 26671722 |
[43] |
Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Angew. Chem. Int. Ed. 2015, 54, 5408.
|
[44] |
Hu, J.; Zhang, M.; Ju, Y. Soft Matter 2009, 5, 4971.
|
[45] |
Gao, Y. X.; Hao, J.; Wu, J. D.; Zhang, X.; Hu, J.; Ju, Y. Nanoscale 2015, 7, 13568.
pmid: 26204430 |
[46] |
George, S. J.; de Bruijn, R.; Tomovića, Z.; Van Averbeke, B.; Beljonne, D.; Lazzaroni, R.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2012, 134, 17789.
doi: 10.1021/ja3086005 pmid: 23030496 |
[47] |
Xing, P.; Zhao, Y. L. Acc. Chem. Res. 2018, 51, 2324.
pmid: 30179457 |
[48] |
Kaiser, T. R.; Stepanenko, V.; Würthner, F. J. Am. Chem. Soc. 2009, 131, 6719.
doi: 10.1021/ja900684h pmid: 19388696 |
[49] |
Minoia, A.; Destoop, I.; Ghijsens, E.; Feyter, S. D.; Tahara, K.; Tobec, Y.; Lazzaronia, R. RSC Adv. 2015, 5, 6642.
doi: 10.1039/C4RA11269E |
[50] |
Green, M. M.; Reidy, M. P. J. Am. Chem. Soc. 1989, 111, 6452.
doi: 10.1021/ja00198a084 |
[51] |
van, Gorp, J. J.; Vekemans,, J. A. J. M.; Meijer,, E. W. J. Am. Chem. Soc. 2002, 124, 14759.
pmid: 12465989 |
[52] |
Palmans, A. R. A.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Angew. Chem. Int. Ed., 1997, 36, 2648.
doi: 10.1002/(ISSN)1521-3773 |
[53] |
Veling, N.; van Hameren, R.; van Buul, A. M.; Rowan, A. E.; Nolte, R. J. M.; Elemans, J. A. W. Chem. Commun. 2012, 48, 4371.
|
[54] |
Nie, B.; Zhan, T. G.; Zhou, T. Y.; Xiao, Z. Y.; Jiang, G. f.; Zhao, X. Chem. Asian. J. 2014, 9, 754.
pmid: 24458482 |
[55] |
Dudek, M.; Machalska, E.; Oleszkiewicz, T.; Grzebelus, E.; Baranski, R.; Szcześniak, P.; Mlynarski, J.; Zajac, G.; Kaczor, A.; Baranska, M. Angew. Chem. Int. Ed., 2019, 58, 8383.
|
[56] |
Avalos, M.; Babiano, R.; Cintas, P.; Jiméne, J. L.; Palacios, J. C. Chem. Rev. 1998, 98, 2391.
pmid: 11848967 |
[57] |
Kim, M. J.; Shin, B. G.; Kim, J. J.; Kim, D. Y. J. Am. Chem. Soc. 2002, 124, 3504.
pmid: 11929229 |
[58] |
Xu, Y. Y.; Yang, G.; Xia, H. Y.; Zou, G.; Zhang, Q. J.; Gao, J. G. Nat. Commun. 2014, 5, 5050.
pmid: 25247276 |
[59] |
Chen, P. L.; Ma, X. G.; Hu, K. M.; Rong, Y. L.; Liu, M. H. Chem. Eur. J. 2011, 17, 12108.
pmid: 21905133 |
[60] |
Bailey, J.; Chrysostomou, A.; Hough, J. H.; Cledhill, T. M.; McCall, A.; Clark, S.; Menard, F.; Tamura, M. Science 1998, 281, 672.
pmid: 9714676 |
[61] |
Kim, J.; Lee, J.; Kim, W. Y.; Kim, H.; Lee, S.; Lee, H. C.; Lee, Y. S.; Seo, M.; Kim, S. Y. Nat. Commun. 2015, 6, 6959.
pmid: 25903970 |
[62] |
Wang, L. B.; Yin, L.; Zhang, W.; Zhu, X. L.; Fujiki, M. J. Am. Chem. Soc. 2017, 139, 13218.
pmid: 28846842 |
[63] |
Ribó, J. M.; Crusats, J.; Sagués, F.; Claret, J.; Rubires, R. Science 2001, 292, 2063.
pmid: 11408653 |
[64] |
Micali, N.; Engelkamp, H.; van Rhee, P. G.; Christianen, P. C. M.; Monsù Scolaro, L.; Maan, J. C. Nat. Chem. 2012, 4, 201.
pmid: 22354434 |
[65] |
Yuan, J.; Zhang, L.; Huang, X.; Jiang, S. G.; Liu, M. H. Prog. Chem. 2005, 17, 780. (in Chinese)
|
(袁菁, 张莉, 黄昕, 姜思光, 刘鸣华, 化学进展, 2005, 17, 780.)
|
|
[66] |
Hegstrom, R. A.; Kondepudi, D. K. Sci. Am. 1990, 262, 108.
|
[67] |
Zhang, J.; Yuan, H.; Cai, J.; Wei, X. H.; Liu, D. S. Sci. Bull. 2016, 61, 630. (in Chinese)
|
(张静, 袁鸿, 蔡瑾, 魏学红, 刘滇生, 科学通报, 2016, 61, 630.)
|
|
[68] |
Sang, Y. T.; Liu, M. H. Symmetry 2019, 11, 950.
|
[69] |
Viswanathan, R.; Zasadzinski, J. A.; Schwartz, D. K. Nature 1994, 368, 440.
doi: 10.1038/368440a0 |
[70] |
Yuan, J.; Liu, M. H. J. Am. Chem. Soc. 2003, 125, 5051.
doi: 10.1021/ja0288486 pmid: 12708854 |
[71] |
Maity, A.; Gangopadhyay, M.; Basu, A.; Aute, S.; Babu, S. S.; Das, A. J. Am. Chem. Soc. 2016, 138, 11113.
pmid: 27517868 |
[72] |
Cantekin, S.; de Greef, T. F. A.; Palmans, A. R. A. Chem. Soc. Rev. 2012, 41, 6125.
pmid: 22773107 |
[73] |
Karunakaran, S. C.; Cafferty, B. J.; Weigert-Muñoz, A.; Schuster, G.B., Hud, N. V. Angew. Chem. Int. Ed. 2019, 58, 1453.
doi: 10.1002/anie.v58.5 |
[74] |
Shen, Z. C.; Jiang, Y. Q.; Wang, T. Y.; Liu, M. H. J. Am. Chem Soc. 2015, 137, 16109.
pmid: 26647220 |
[75] |
Buchs, J.; Vogel, L.; Janietz, D.; Prehm, M.; Tschierske, C. Angew. Chem. Int. Ed. 2017, 56, 280.
|
[76] |
Ariga, K.; Mori, T.; Kitao, T.; Uemura, T. Adv. Mater. 2020,1905657.
|
[77] |
Llusar, M.; Sanchez, C. Chem. Mater. 2008, 20, 782.
|
[78] |
Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
|
[79] |
Gao, Y. X.; Hao, J.; Liu, J. G.; Liang, Y.; Du, F. P.; Hu, J.; Ju, Y. Mater. Chem. Front. 2019, 3, 308.
|
[80] |
Nakagawa, M.; Kawai, T. J. Am. Chem. Soc. 2018, 140, 4991.
doi: 10.1021/jacs.8b00910 pmid: 29613794 |
[81] |
Golla, M.; Albert, S. K.; Atchimnaidu, S.; Perumal, D.; Krishnan, N.; Varghese, R. Angew. Chem. Int. Ed. 2019, 58, 3865.
|
[82] |
Wang, H.; Zhu, W.; Li, J.; Tian, T.; Lan, Y.; Gao, N.; Wang, C.; Zhang, M.; Faul, C. F. J.; Li, G. T. Chem. Sci. 2015, 6, 1910.
doi: 10.1039/c4sc03278k pmid: 28757993 |
[83] |
Savić, S. M.; Vojisavljević, K.; Počuča-Nešić, M.; Živojević, K.; Mladenović, M.; Knežević, N. Ž. Metall. Mater. Eng. 2018, 24, 225.
|
[84] |
Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1 73.
pmid: 18095713 |
[85] |
He, Q.; Tuo, D. T.; Ao, Y. F.; Wang, Q. Q.; Wang, D. X. ACS Appl. Mater. Interfaces 2018, 10, 3181.
|
[86] |
Li, S.; Zhang, L.; Jiang, J.; Meng, Y.; Liu, M. H. ACS Appl. Mater. Interfaces 2017, 9, 37386.
doi: 10.1021/acsami.7b10353 |
[87] |
Noguchi, T.; Roy, B.; Yoshihara, D.; Sakamoto, J.; Yamamoto, J.; Shinkai, S. Angew. Chem. Int. Ed. 2017, 56, 12518.
doi: 10.1002/anie.v56.41 |
[88] |
Yue, B. B.; Yin, L. Y.; Zhao, W. D.; Jia, X. Y.; Zhu, M. J.; Wu, B.; Wu, S.; Zhu, L. L. ACS Nano 2019, 13, 12438.
doi: 10.1021/acsnano.9b06250 pmid: 31560190 |
[89] |
Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Adv. Mater. 2019,1900110.
|
[90] |
Kumar, J.; Nakashima, T.; Kawai, T. J. Phys. Chem. Lett. 2015, 6, 3445.
doi: 10.1021/acs.jpclett.5b01452 pmid: 26269090 |
[91] |
Kumar, J.; Nakashima, T.; Tsumatori, H.; Mori, M.; Naito, M.; Kawai, T. Chem.-Eur. J. 2013, 19, 14090.
pmid: 24026812 |
[92] |
Li, H. K.; Li, B. L.; Tang, B. Z. Chem. Asian J. 2019, 14, 674.
pmid: 30417570 |
[93] |
Liu, J. Z.; Su, H. M.; Meng, L. M.; Zhao, Y. H.; Deng, C. M.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X. H.; Wu, H. K.; Wong, K. S.; Tang, B. Z. Chem. Sci. 2012, 3, 2737.
doi: 10.1039/c2sc20382k |
[94] |
Goto, T.; Okazaki, Y.; Ueki, M.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Ihara, H. Angew. Chem. Int. Ed. 2017, 56, 2989.
|
[95] |
Huo, S. W.; Duan, P. F.; Jiao, T. F.; Peng, Q. M.; Liu, M. H. Angew. Chem. Int. Ed. 2017, 56, 12174.
doi: 10.1002/anie.201706308 |
[96] |
Nitti, A.; Pasini, D. Adv. Mater. 2020,1908021.
|
[97] |
Jin, Q. X.; Li, J.; Li, X. G.; Zhang, L.; Fang, S. M.; Liu, M. H. Prog. Chem. 2014, 26, 919. (in Chinese)
|
(靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华, 化学进展, 2014, 26, 919.)
|
|
[98] |
Fang, W. W.; Zhang, Y.; Wu, J. J.; Liu, C.; Zhu, H. B.; Tu, T. Chem. Asian J. 2018, 13, 712.
pmid: 29377536 |
[99] |
Jiang, J.; Ouyang, G. H.; Zhang, L.; Liu, M. H. Chem.-Eur. J. 2017, 23, 9439.
doi: 10.1002/chem.201700727 pmid: 28342230 |
[100] |
Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, T.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 734.
doi: 10.1021/ja0573312 pmid: 16417359 |
[101] |
Clarke, M. L.; Fuentes, J. A. Angew. Chem. Int. Ed. 2007, 46, 930.
|
[102] |
Lee, K. S.; Parquette, J. R. Chem. Commun. 2015, 51, 15653.
|
[103] |
Raynal, M.; Portier, F.; van Leeuwen, P. W. N. M.; Bouteiller, L. J. Am. Chem. Soc. 2013, 135, 17687.
doi: 10.1021/ja408860s pmid: 24152058 |
[104] |
Jiang, J.; Wang, T. Y.; Liu, M. H. Chem. Commun. 2010, 46, 7178.
|
[105] |
Jiang, J.; Meng, Y.; Zhang, L.; Liu, M. H. J. Am. Chem. Soc. 2016, 138, 15629.
pmid: 27934018 |
[106] |
Yuan, C. H.; Jiang, J.; Sun, H.; Wang, D. C.; Hu, Y. H.; Liu, M. H. ChemCatChem 2018, 10, 2190.
doi: 10.1002/cctc.v10.10 |
[107] |
Sun, H.; Jiang, J.; Sun, Y. M.; Zhang, Q.; Liu, M. H. Chem. Commun. 2019, 55, 3254.
doi: 10.1039/C9CC00941H |
[108] |
Escuder, B.; Rodríguez-Llansola, F.; Miravet, J. F. New J. Chem. 2010, 34, 1044.
doi: 10.1039/b9nj00764d |
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[4] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[5] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[6] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[7] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[8] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[9] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[10] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[11] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
[12] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[13] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[14] | 徐萌萌, 蔡泉. 2-吡喃酮的催化不对称Diels-Alder反应研究进展[J]. 有机化学, 2022, 42(3): 698-713. |
[15] | 陈运荣, 刘炜, 杨晓瑜. 叔醇的动力学拆分研究进展[J]. 有机化学, 2022, 42(3): 679-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||