有机化学 ›› 2025, Vol. 45 ›› Issue (11): 4013-4025.DOI: 10.6023/cjoc202508018 上一篇 下一篇
综述与进展
杨建业, 周佩, 申起飞, 张珮娟, 胥艳子, 赵炳捷*(
), 党东锋*(
)
收稿日期:2025-08-21
修回日期:2025-10-21
发布日期:2025-11-12
基金资助:
Jianye Yang, Pei Zhou, Qifei Shen, Peijuan Zhang, Yanzi Xu, Bingjie Zhao*(
), Dongfeng Dang*(
)
Received:2025-08-21
Revised:2025-10-21
Published:2025-11-12
Contact:
*E-mail: dongfengdang@xjtu.edu.cn; bingjiezhao@xjtu.edu.cn
Supported by:文章分享
有机自由基材料因其特殊的开壳电子结构, 展现出独特的磁学、光学和氧化还原特性, 已在生物医学领域得到广泛应用. 但多数有机自由基寿命极短, 难以实现分离, 目前仅能通过立体化学等少数策略获得稳定的自由基材料. 因此, 如何开发稳定的自由基材料一直是近年来研究的重点和难点. 综述了有机自由基材料的分类、分子设计和基本特性, 论述了该材料在生物医学领域的应用, 尤其是在生物成像、光动力治疗、光热治疗以及协同治疗等方面的应用. 此外, 讨论了这些有机自由基材料目前所面临的各种挑战及未来发展机遇.
杨建业, 周佩, 申起飞, 张珮娟, 胥艳子, 赵炳捷, 党东锋. 有机自由基材料在生物医学领域的研究进展[J]. 有机化学, 2025, 45(11): 4013-4025.
Jianye Yang, Pei Zhou, Qifei Shen, Peijuan Zhang, Yanzi Xu, Bingjie Zhao, Dongfeng Dang. Progress of Organic Radical Materials in Biomedical Applications[J]. Chinese Journal of Organic Chemistry, 2025, 45(11): 4013-4025.
| [38] |
doi: 10.1021/jacs.2c02178 |
| [39] |
doi: 10.1002/anie.201207671 pmid: 23355507 |
| [40] |
doi: 10.1016/j.chempr.2020.09.024 |
| [41] |
doi: 10.1039/D2TC03712B |
| [42] |
doi: 10.1021/jacs.9b11518 |
| [43] |
doi: 10.1021/jacs.9b08149 |
| [1] |
doi: 10.1021/cr400056a |
| [2] |
doi: 10.1039/C6CS00271D |
| [3] |
doi: 10.1039/C6CS00192K |
| [4] |
doi: 10.1002/adfm.v33.48 |
| [5] |
doi: 10.1016/j.cell.2015.10.001 |
| [6] |
doi: 10.1002/anie.v57.11 |
| [7] |
doi: 10.1021/ja02049a006 |
| [8] |
doi: 10.1021/ja02033a015 |
| [9] |
doi: 10.1021/ja02021a001 |
| [10] |
doi: 10.1002/adom.v10.7 |
| [11] |
doi: 10.1039/D2CC04481A |
| [12] |
doi: 10.1016/j.dyepig.2022.110260 |
| [13] |
doi: 10.1002/adma.v35.6 |
| [44] |
doi: 10.1002/anie.v60.12 |
| [45] |
doi: 10.1039/D0CC06400A |
| [46] |
doi: 10.1039/c7tb01241a pmid: 32264204 |
| [47] |
|
| [48] |
doi: 10.1021/ja3079829 |
| [49] |
doi: 10.1021/acscentsci.7b00253 |
| [14] |
doi: 10.1039/D2TC03299F |
| [15] |
doi: 10.1038/s41563-020-0705-9 |
| [16] |
doi: 10.3390/molecules23051034 |
| [17] |
doi: 10.1007/s11426-019-9641-2 |
| [18] |
doi: 10.1021/acsapm.4c00432 |
| [50] |
doi: 10.1016/j.matt.2023.12.009 |
| [51] |
doi: 10.1039/c6cs00565a pmid: 29498718 |
| [52] |
|
| [53] |
|
| [54] |
doi: 10.1021/acs.accounts.6b00292 |
| [55] |
|
| [56] |
doi: 10.1016/j.ccr.2020.213575 |
| [57] |
doi: 10.1038/s41563-019-0433-1 |
| [58] |
doi: 10.1063/5.0047636 |
| [59] |
|
| [60] |
|
| [61] |
doi: 10.1002/adma.v33.4 |
| [19] |
doi: 10.1002/anie.v58.43 |
| [20] |
doi: 10.31635/ccschem.020.202000210 |
| [21] |
doi: 10.6023/A23040191 |
|
(车飞达, 赵晓茗, 张馨, 丁琪, 王昕, 李平, 唐波, 化学学报, 2023, 81, 1255.)
|
|
| [22] |
doi: 10.6023/A23040130 |
|
(任妍妍, 李欣, 韩英锋, 化学学报, 2023, 81, 735.)
|
|
| [23] |
|
| [24] |
doi: 10.1038/s41586-018-0695-9 |
| [62] |
|
| [63] |
doi: 10.1021/cr5004198 |
| [64] |
doi: 10.1021/acsnano.6b00168 |
| [65] |
doi: 10.1038/s41467-021-23194-w pmid: 34006860 |
| [66] |
doi: 10.1039/D3SC06826A |
| [25] |
doi: 10.1002/adma.v32.32 |
| [26] |
doi: 10.1021/acs.accounts.7b00229 |
| [27] |
doi: 10.1002/adma.v33.43 |
| [28] |
doi: 10.1002/mats.201600023 |
| [29] |
doi: 10.1021/jp203601w pmid: 21692499 |
| [30] |
doi: 10.1002/anie.v50.22 |
| [31] |
|
| [67] |
doi: 10.1039/C8CC04582H |
| [68] |
doi: 10.1007/s11426-020-9922-3 |
| [69] |
doi: 10.1039/d0mh01312a pmid: 34821273 |
| [70] |
doi: 10.1039/D0TB02659J |
| [71] |
|
| [32] |
doi: 10.1002/adhm.v13.23 |
| [33] |
doi: 10.1016/S0009-2614(97)00775-6 |
| [34] |
doi: 10.1002/anie.201915534 pmid: 31825136 |
| [35] |
doi: 10.1039/C8CC09700C |
| [36] |
doi: 10.1021/ja209763u |
| [72] |
|
| [73] |
|
| [74] |
doi: 10.1038/s41377-025-01993-w |
| [75] |
|
| [76] |
doi: 10.1002/advs.v12.17 |
| [77] |
doi: 10.1007/s40820-023-01219-x |
| [78] |
doi: 10.1039/C5SC01167A |
| [79] |
|
| [80] |
doi: 10.1002/adma.v32.29 |
| [81] |
doi: 10.1002/adma.v34.9 |
| [82] |
|
| [83] |
doi: 10.1016/j.biomaterials.2021.121305 |
| [84] |
doi: 10.1002/adma.v36.48 |
| [85] |
doi: 10.1021/acsami.0c21889 |
| [37] |
|
| [86] |
doi: 10.1002/advs.v12.15 |
| [87] |
doi: 10.1016/j.talanta.2023.124948 |
| [88] |
doi: 10.1021/jacs.4c11549 |
| [1] | 相韩悦, 魏少荫, 王玉记, 肖猱. 基于N-氧化物结构Fe2+荧光探针的研究进展[J]. 有机化学, 2025, 45(4): 1137-1152. |
| [2] | 吕朦朦, 贾宵雪, 王建国. G-四链体荧光探针的应用进展[J]. 有机化学, 2025, 45(11): 4070-4081. |
| [3] | 陈怡萱, 赵征. 聚集诱导发光光敏剂用于光动力抗菌治疗[J]. 有机化学, 2025, 45(11): 3998-4012. |
| [4] | 黄凯航, 尹理, 姜青云, 汪乾, 石光, 许炳佳. 具有聚集诱导发光性质的高效热激活延迟荧光材料用于脂滴成像[J]. 有机化学, 2024, 44(8): 2479-2486. |
| [5] | 孟子翔, 田秀梅, 张天富. 聚集诱导发光材料在肿瘤光治疗应用中的最新进展[J]. 有机化学, 2024, 44(8): 2441-2452. |
| [6] | 贾涵羽, 俞岳文, 冯光雪, 唐本忠. 利用光诱导电子转移机制构筑I型聚集诱导发光光敏剂用于光动力治疗[J]. 有机化学, 2024, 44(8): 2530-2537. |
| [7] | 张莹珍, 江丹丹, 李娟华, 王菁菁, 刘昆明, 刘晋彪. 高选择性硒代半胱氨酸荧光探针的构建策略及成像[J]. 有机化学, 2024, 44(1): 41-53. |
| [8] | 曲衍杰, 李亚军, 鲍红丽. 反应型氟离子探针的研究进展[J]. 有机化学, 2023, 43(3): 809-825. |
| [9] | 李娜, 谭啸峰, 杨晴来. 肠道微生物菌群成像标记策略及其应用的研究进展[J]. 有机化学, 2022, 42(5): 1375-1386. |
| [10] | 项雯晖, 张磊, 支旭, 钱鹰. 吩噻嗪-荧光蛋白生色团类似物的合成、S原子促进的光动力治疗及双光子荧光成像[J]. 有机化学, 2021, 41(9): 3578-3584. |
| [11] | 李芳, 唐永和, 郭锐, 林伟英. 高灵敏线粒体靶向近红外二氧化硫荧光探针的开发及细胞、小鼠成像研究[J]. 有机化学, 2021, 41(3): 1108-1116. |
| [12] | 陈恩庆, 唐永和, 王蕾, 任江波, 林伟英. 基于硝基还原机理的一氧化碳荧光探针的开发及细胞成像研究[J]. 有机化学, 2021, 41(3): 1200-1206. |
| [13] | 张明光, 李明新, 杨益琴, 徐徐, 宋杰, 王忠龙, 王石发. 诺蒎酮基喹唑啉-2-胺型铜离子荧光探针的合成及其应用研究[J]. 有机化学, 2021, 41(3): 1168-1176. |
| [14] | 李维, 贾旭, 郭振波, 姜文婷, 张平竹, 魏超, 李小六. 聚集诱导发光探针用于细胞缺血再灌注诱导过氧化氢成像研究[J]. 有机化学, 2020, 40(7): 1934-1940. |
| [15] | 程晓红, 李爽, 汪竞阳, 李望南. 荧光增强型次氯酸根传感器及其在细胞成像与自来水检测中的应用[J]. 有机化学, 2020, 40(7): 1941-1947. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||