[1] (a) Steinbiss M.; Maczka M.; Langewald J.; London B.; Vallinayagam R.; Jones P. G.; Bastiaans H.; Schulz, S. J. Nat. Prod.2020, 83, 468.
(b) Nguyen, V.-A.; Willis, C. L.; Gerwick, W. H.Chem. Commun. 2001, 1934.
(c) Butler, A.; Walker, J. V.Chem. Rev. 1993, 93, 1937.
(d) Verhaeghe, P.; Azas, N.; Hutter, S.; Castera-Ducros, C.; Laget, M.; Dumètre, A.; Gasquet, M.; Reboul, J.-P.; Rault, S.; Rathelot, P.; Vanelle, P.Bioorg. Med. Chem. 2009, 17, 4313.
(e) Guo K.-L.; Zhao L.-X.; Wang Z.-W.; Rong S.-Z.; Zhou X.-L.; Gao S.; Fu Y.; Ye F. Biomolecules2019, 9, 438.
(f) Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M.J. Am. Chem. Soc. 2007, 129, 9588.
(g) Brantley, S. E.; Molinski, T. F.Org. Lett. 1999, 1, 2165.
(h) Kawamura K.; Kato, K. Polym. Adv. Technol.2004, 15, 324.
[2] Galonić D. P.; Vaillancourt, F. H.; Walsh, C. T.J. Am. Chem. Soc. 2006, 128, 3900.
[3] (a) Beaumont S.; llardi E. A.; Monroe L. R.; Zakarian, A. J. Am. Chem. Soc.2010, 132, 1482.
(b) Gu, Z. H.; Herrmann, A. T.; Zakarian, A.Angew. Chem. Int. Ed. 2011, 50, 7136.
[4] (a) Li S.-J.; Wang Y.; Xu J.-K.; Xie D.; Tian S.-K.; Yu Z.-X. Org. Lett.2018, 20, 4545.
(b) Wang H.-Y.; Tian S.-K. Org. Lett.2019, 21, 5675.
(c) Gupta M. K.; Li Z.; Snowden, T. S. J. Org. Chem.2012, 77, 4854.
(d) Henegar K. E.; Lira, R. J. Org. Chem.2012, 77, 2999.
(e) Wang, W.; Lian, X.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Chem. Commun. 2011, 47, 7821.
(f) Li, Y.; Zheng, T.; Wang, W.; Xu, W.; Ma; Y.; Zhang, S.; Wang, H.; Sun, Z.Adv. Synth. Catal. 2012, 354, 308.
(g) Liang, Y.-Y.; Lv, G.-F.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H.Adv. Synth. Catal. 2021, 363, 290.
(h) Huang, G.; Yu, J.-T.; Pan, C.Adv. Synth. Catal. 2021, 363, 305.
[5] (a) Liu, Y.; Zhang, J.-L.; Song, R.-J.; Li, J.-H.Eur. J. Org. Chem. 2014, 1177.
(b) Ueda, M.; Doi, N.; Miyagawa, H.; Sugita, S.; Takeda, N.; Shinada, T.; Miyata, O. Chem. Commun.# 2015, 51#, 4204.
(c) Li, W.-Y.; Wu, C.-S.; Zhou, W.; Yang, L.Chem. Commun. 2018, 54, 11013.
(d) Wu Y.; Liu H.; Liu L.; Yu, J.-T. Org. Biomol. Chem.2023, 21, 7079.
[6] (a) Zhang, Y.; Teng, B.-H.; Wu, X.-F.Chem. Sci. 2024, 15, 1418.
(b) Zhao Y.-L.; Yao Y.; Li W.-T.; Qin J.-H.; Sun Q.; Li J.-H.; Ouyang, X.-H. Org. Chem. Front.2023,10, 4809.
(c) Balili M. N. C.; Pintauer T. Dalton Trans.2011, 40, 3060.
(d) Neff R. K.; Su Y.-L.; Liu S.; Rosado M.; Zhang X.; Doyle, M. P. J. Am. Chem. Soc.2019, 141, 16643.
(e) Chen, C.; Tan, H.; Liu, B.; Yue, C.; Liu, W.Org. Chem. Front. 2018, 5, 3143.
(f) Chen, C.; Li, Y.; Pan, Y.; Duan, L.; Liu, W.Org. Chem. Front. 2019, 6, 2032.
(g) Kumar, V.; Bisoyi, A.; Beevi V, F.; Yatham, V. R.J. Org. Chem. 2024, 89, 16964.
(h) Kusakabe M.; Nagao K.; Ohmiya H. Org. Lett.2021, 23, 7242.
[7] (a) Murai S.; Sugise R.; Sonoda, N. Angew. Chem. Int. Ed.1981, 20, 475.
(b) Chen B.; Fang C.; Liu P.; Ready, J. M. Angew. Chem. Int. Ed.2017, 56, 8780.
(c) Nikitas, N. F.; Voutyritsa, E.; Gkizis, P. L.; Kokotos, C. G.Eur. J. Org. Chem. 2021, 2021, 96.
[8] (a) Wu, N.; Wahl, B.; Woodward, S.; Lewis, W.Chem.—Eur. J. 2014, 20, 7718.
(b) Wahl, B.; Lee, D. S.; Woodward, S.Eur. J. Org. Chem. 2015, 2015, 6033.
[9] Kamijo S.; Yokosaka S.; Inoue M.Tetrahedron 2012, 68, 5290.
[10] (a) Wang Q.; Wang M.; Wu Q.; Ma M.; Zhao B. Org. Lett.2022, 24, 4772.
(b) Pal, B.; Sahoo, S.; Mal, P.J. Org. Chem. 2024, 89, 1784.
(c) Kontara, I. I.; Panagiotari, V. A.; Mountanea, O. G.; Mantzourani, C.; Gkizis, P. L.; Kokotos, G.Eur. J. Org. Chem. 2024, 27, e202400733.
[11] (a) Pothoczki S.; Temleitner L.; Pusztai L. Chem. Rev.2015, 115, 13308.
(b) Drago, R. S. J. Phys. Chem.1991, 95, 9800.
[12] Mandal S.; Bera T.; Dubey G.; Saha J.; Laha, J. K. ACS Catal.2018, 8, 5085.
[13] (a) Zhu, X.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C.Adv. Synth. Catal. 2013, 355, 3558.
(b) Hu, B.; Zhou, P.; Zhang, Q.; Wang, Y.; Zhao, S.; Lu, L.; Yan, S.; Yu, F.J. Org. Chem. 2018, 83, 14978.
(c) Yang, X.; Zhao, L.; Yuan, B.; Qi, Z.; Yan, R.Adv. Synth. Catal. 2017, 359, 3248.
(d) Hu, B.; Zhang, Q.; Zhao, S.; Wang, Y.; Xu, L.; Yan, S.; Yu, F.Adv. Synth. Catal. 2019, 361, 49.
(e) Tong, C.; Gan, B.; Yan, Y.; Xie, Y.-Y.Synth. Commun. 2017, 47, 1927.
(f) More, S. G.; Kamble, R. B.; Suryavanshi, G.J. Org. Chem. 2021, 86, 2107.
(g) Chen H.; Chen L.; He Z.; Zeng Q. Green Chem.2021, 23, 2624.
[14] (a) Ji P.-Y.; Zhang M.-Z.; Xu J.-W.; Liu Y.-F.; Guo, C.-C. J. Org. Chem.2016, 81, 5181.
(b) Zhang, M.-Z.; Luo, N.; Long, R.-Y.; Gou, X.-T.; Shi, W.-B.; He, S.-H.; Jiang, Y.; Chen, J.-Y.; Chen, T.J. Org. Chem. 2018, 83, 2369.
(c) Zhang M.-Z.; Li W.-T.; Li Y.-Y.; Wang Q.; Li C.; Liu Y.-H.; Yin J.-X.; Yang X.; Huang H.; Chen, T. J. Org. Chem.2021, 86, 15544.
[15] (a) Wang, Z.-Y.; Wang, S.; Dai, N.-N.; Xiao, Y.; Zhou, Y.; Tian, W.-C.; Sun, D.; Li, Q.; Wang, Y.; Wei, W.-T.Nat. Commun. 2025, 16, 993.
(b) Zhou Y.; Yang W.-H.; Dai N.-N.; Feng J.-Y.; Yang M.-Q.; Gao W.; Li Q.; Deng C.; Lu Z.; Wei W.-T. Org. Lett.2024, 26, 5074.
(c) Dai N.-N.; Lu Y.-J.; Wu Z.-Q.; Zhou Y.; Tong Y.; Tang K.; Li Q.; Zhang J.-Q.; Liu Y.; Wei W.-T. Org. Lett.2024, 26, 3014.
(d) Yan, Z.; Ye, J.; Wang, H.; Chen, T.; Xu, Z.-F.; Yu, M.; Li, C.-Y.Org. Lett. 2024, 26, 6647.
(e) Zhao, D.; Wang, X.; Huang, J.; Yu, T.; Hao, E.; Ni, S.; Sun, K.Org. Lett. 2025, 27, 1030.
(f) Shi T.; Tian M.; Sun Z.; Zou R.; Zhang Z.; Xie N.; Hao E.; Xu X.; Sun K. Chem. Commun.2025, 61, 4066.
(g) Xu Y.-D.; Xing Y.-M.; Ji H.-T.; Ou L.-J.; He W.-B.; Peng J.; Wang J.-S.; Jiang J.; He, W.-M. J. Org. Chem.2024, 89, 17701.
(h) Ji, H.-T.; Peng, Q.-H.; Wang, J.-S.; Lu, Y.-H.; Dai, H.; Luo, Q.-X.; He, W.-M. Green Chem. 2024, 26, 12084.
(i) Xu H.; Li X.; Wang Y.; Song X.; Shi Y.; Lv J.; Yang D. Org. Lett.2024, 26, 1845.
(j) Wu Q.; Li X.; Ma J.; Shi Y.; Lv J.; Yang D. Org. Lett.2024, 26, 7949.
(k) Tan Y.; Zhao J.; Deng G.-J.; Ji X.; Huang H. Org. Lett.2024, 26, 2398.
(l) Zhu, M.; Wang, Q.-L.; Huang, H.; Mao, G.; Deng, G.-J.J. Org. Chem. 2024, 89, 12591.
(m) Chen T.; Zhang W.; Yan Z.; Xu Z.-F.; Li, C.-Y. Org. Chem. Front.2024, 11, 299.
(n) Niu C.; Yang J.; Yan K.; Su Z.; Li B.; Wen, J. J. Org. Chem.2024, 89, 13284.
[16] For selected latest examples, see:
(a) Wang Q.-L.; Zhou Q.; Liao J.; Chen Z.; Xiong B.-Q.; Deng G.-J.; Tang K.-W.; Liu, Y. J. Org. Chem.2021, 86, 2866.
(b) Xian, N.; Yin, J.; Ji, X.; Deng, G.-J.; Huang, H.Org. Lett. 2023, 25, 1161.
(c) Liu Z.; Zhong S.; Ji X.; Deng G.-J.; Huang H. ACS Catal.2021, 11, 4422.
(d) Zhong L.-J.; Chen H.; Shang X.; Xiong B.-Q.; Tang K.-W.; Liu, Y. J. Org. Chem.2024, 89, 5409.
(e) Zhong L.-J.; Chen H.; Shang X.; Fan J.-H.; Tang K.-W.; Liu Y.; Li, J.-H. J. Org. Chem.2024, 89, 8721.
(f) Wang X.-S.; Zhang Y.-J.; Cao J.; Xu, L.-W. J. Org. Chem.2024, 89, 12848.
(g) Wu, Z.-L.; Liu, J.-T.; Zhou, R.-W.; Deng, M.-Q.; Li, X.; Ji, H.-T.; He, W.-M.J. Org. Chem. 2024, 89, 12693.
(h) Hou H.; Ou W.; Su, C. J. Org. Chem.2024, 89, 4120.
(i) Han, S; Liu, L.; Meng, J.; Li, M.; Cao, Q.; Shen, Z.J. Org. Chem. 2025, 90, 7062.
(j) Cao Y.; Wei Y.; Hu Y.; Liu D.; Liu M.; Wang J.; Li C.; Wang P.; Hu L.; Li, F. Org. Biomol. Chem.2025, 23, 5106.
[17] (a) Lu, M.-Z.; Loh, T.-P.Org. Lett. 2014, 16, 4698.
(b) Li, X.; Xu, J.; Gao, Y.; Fang, H.; Tang, G.; Zhao, Y.J. Org. Chem. 2015, 80, 2621.
(c) Li D.; Shen X. Tetrahedron Lett.2020, 61, 152316.
(d) Zhu M.; Fu W. Heterocycl. Commun.2015, 21, 387.
[18] Su L.; Sun H.; Liu J.; Wang C.Org. Lett. 2021, 23, 4662.
[19] An example of converting arylacrylamide with CCl4 into a trichloromethylated oxindole was also demonstrated in a metal-free phenol/Cs2CO3-promoted cascade cyclization ofN-arylacrylamides with unactivated aryl and alkyl chlorides, see: Jha, A. K.; Nair, D. P.; Arif, M.; Yedase, G. S.; Kuniyil, R.; Yatham, V. R. J. Org. Chem. 2023, 88, 15389.
[20] Chen C.; Liu R.-X.; Xiong F.; Li Z.-H.; Kang J.-C.; Ding T.-M.; Zhang S.-Y. Chem. Commun.2022, 58, 9230.
[21] The α-bromination of ketones is a straightforward method for producing α-bromoketones, which are versatile intermediates in organic synthesis. Commonly used brominating systems in the reported reactions include liquid bromine (Br2), HBr/H2O2, CuBr2, CuBr, NH4Br/H2SO4, NBS, dibromohydantoin (DBH), etc. However, these bromination systems exhibit at least one of the following drawbacks:(1) unsafe;
(a) Li Z.; B.; Wang C.; Zhang, Lo W. Y.; Yang L.; Sun, J. J. Am. Chem. Soc.2024, 146, 2779.
(b) Podgoršek A.; Stavber S.; Zupan M.; Iskra J. Green Chem.2007, 9, 1212.
(c) Zampieri, D.; Calabretti, A.; Romano, M.; Fortuna, S.; Collina, S.; Amata, E.; Dichiara, M.; Marrazzo, A.; Mamolo, M. G.Molecules 2023, 28, 3431.
(d) Moon D. Y.; An S.; Park B. S. Tetrahedron2019, 75, 130684.
(e) Dong, Y.; Yang, G.; Sun, Z.; Wei, G.; Zhu, X. CN115093374 A, 2022.
(f) Jagatheesan R.; Raj K. J. S.; Lawrence S.; Christopher, C. Int. J. Res. Pharm. Chem.2016, 6, 843.
(g) Wang J.; Wang X.; Niu Z.-Q.; Wang J.; Zhang M.; Li J. Synth. Commun.2016, 46, 165.
(h) Reddy B. M.; Kumar V. V. R.; Reddy N. C. G.; Rao, S. M. Chin. Chem. Lett.2014, 25, 179.
(i) Lee J. C.; Park, H. J. Synth. Commun.2007, 37, 87.
(j) NicDaéid, N.; Meier-Augenstein, W.; Kemp, H. F.; Sutcliffe, O. B.Anal. Chem. 2012, 84, 8691.
(k) Bartroli, J.; Turmo, E.; Alguero, M.; Boncompte, E.; Vericat, M. L.; Garcia-Rafanell, J.; Fom, J.J. Med. Chem. 1995, 38, 3918.
(l) Meltzer P. C.; Butler D.; Deschamps J. R.; Madras, B. K. J. Med. Chem.2006, 49, 1420.
(m) Chai Y.-M.; Zou Q.; Guo Z.-X.; Qin Y.-J.; Zhang P. Tetrahedron Lett.2023, 122, 154517.
[22] The use of tetrabutylammonium tribromide (n-Bu4NBr3) as a source of Br2 in the α-bromination reaction is also documented in the literature, see: Kondoh, A.; Tasato N.; Aoki T.; Terada M. Org. Lett.2020, 22, 5170(in SI file).
[23] Jiang Q.; Sheng W.; Guo C.Green Chem. 2013, 15, 2175.
[24] More optimizations can be found in the Supporting Information.
[25] Zhang M.-Z.; Ji P.-Y.; Liu Y.-F.; Xu J.-W.; Guo, C.-C. Adv. Synth. Catal.2016, 358, 2976.
[26] Xu B.; Zhao H.; Chen H.; Sun D.; Qin M.; Gong P. ChemistrySelect2022, 7, e202201602.
[27] (a) Mu X.; Wu T.; Wang H.-Y.; Guo Y.-L.; Liu, G.-S. J. Am. Chem. Soc. 2012, 134, 878. (b) Fabry D. C.; Stodulski M.; Hoerner S.; Gulder T. Chem.-Eur. J.2012, 18, 10834. |