Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (8): 2390-2405.DOI: 10.6023/cjoc202202039 Previous Articles Next Articles
REVIEW
收稿日期:
2022-02-28
修回日期:
2022-04-13
发布日期:
2022-04-29
通讯作者:
李筱芳, 张少伟
基金资助:
Sha Li, Yahan Sun, Yankui Meng, Xiaofang Li(), Shaowei Zhang()
Received:
2022-02-28
Revised:
2022-04-13
Published:
2022-04-29
Contact:
Xiaofang Li, Shaowei Zhang
Supported by:
Share
Sha Li, Yahan Sun, Yankui Meng, Xiaofang Li, Shaowei Zhang. Progress in the Synthesis and Derivatization of Norcorrole[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2390-2405.
[1] |
Proft, F. D.; Geerlings, P. Chem. Rev. 2001, 101, 1451.
pmid: 11710228 |
[2] |
Krygowski, T. M.; Cyrański, M. K. Chem. Rev. 2001, 101, 1385.
pmid: 11710226 |
[3] |
Schleyer, P. R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H.; Puchta, R.; Hommes, N. E. Org. Lett. 2001, 3, 2465.
pmid: 11483036 |
[4] |
Liu, J.; Ma, J.; Zhang, K.; Ravat, P.; Machta, P.; Avdoshenko, S.; Hennersdorf, F.; Komber, H.; Pisula, W.; Weigand, J. J.; Popov, A. A.; Berger, R.; Müllen, K.; Feng, X. J. Am. Chem. Soc. 2017, 139, 7513.
doi: 10.1021/jacs.7b01619 |
[5] |
Breslow, R.; Foss, F. W. J. Phys.: Condens. Matter. 2008, 20, 374104.
|
[6] |
Nishinaga, T.; Uto, T.; Inoue, R.; Matsuura, A.; Treitel, N.; Rabinovitz, M.; Komatsu, K. Chem.-Eur. J. 2008, 14, 2067.
pmid: 18081128 |
[7] |
Fan, C.; Mercier, L. G.; Piers, W. E.; Tuononen, H. M.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 9604.
doi: 10.1021/ja105075h |
[8] |
Breslow, R.; Schneebeli, S. T. Tetrahedron. 2011, 67, 10171.
doi: 10.1016/j.tet.2011.08.008 |
[9] |
Ghosh, A.; Wasbotten, I. H.; Davis, W.; Swarts, J. C. Eur. J. Inorg. Chem. 2005, 22, 4479.
|
[10] |
Sessler, J. L.; Tomat, E. Acc. Chem. Res. 2007, 40, 371.
doi: 10.1021/ar600006n |
[11] |
Aviv-Harel, I.; Gross, Z. Chem.-Eur. J. 2009, 15, 8382.
doi: 10.1002/chem.200900920 pmid: 19630016 |
[12] |
Nozawa, R.; Yamamoto, K.; Shin, J. Y.; Hiroto, S.; Shinokubo, H. Angew. Chem., Int. Ed. 2015, 54, 8454.
doi: 10.1002/anie.201502666 |
[13] |
Liu, B.; Yoshida, T.; Li, X.; Stępień, M.; Shinokubo, H.; Chmielewski, P. J. Angew. Chem., Int. Ed. 2016, 55, 13142.
doi: 10.1002/anie.201607237 |
[14] |
Tu, X. M.; Xie, Q. J.; Jiang, S. Y.; Yao, S. Z. Biosens. Bioelectron. 2007, 22, 2819.
doi: 10.1016/j.bios.2006.11.022 |
[15] |
Suga, T.; Sugita, S.; Ohshiro, H.; Oyaizu, K.; Nishide. H. Adv. Mater. 2011, 23, 751.
doi: 10.1002/adma.201003525 |
[16] |
Shin, J. Y.; Yamada, T.; Yoshikawa, H.; Awaga, K.; Shinokubo, H. Angew. Chem., Int. Ed. 2014, 53, 3096.
doi: 10.1002/anie.201310374 |
[17] |
Deng, K.; Li, X.; Huang, H. Electrochim. Acta 2016, 204, 84.
doi: 10.1016/j.electacta.2016.04.060 |
[18] |
Fujii, S.; Marqués-González, S.; Shin, J. Y.; Shinokubo, H.; Masuda, T.; Nishino, T.; Arasu, N. P.; Vázquez, H.; Kiguchi, M. Nat. Commun. 2017, 8, 15984.
doi: 10.1038/ncomms15984 |
[19] |
Ukai, S.; Koo, Y. H.; Fukui, N.; Seki, S.; Shinokubo, H. Dalton Trans. 2020, 49, 14383.
doi: 10.1039/D0DT03143G |
[20] |
Bröring, M.; Köhler, S.; Kleeberg, C. Angew. Chem., Int. Ed. 2008, 47, 5658.
doi: 10.1002/anie.200801196 |
[21] |
Ito, T.; Hayashi, Y.; Shimizu, S.; Shin, J. Y.; Kobayashi, N.; Shinokubo, H. Angew. Chem., Int. Ed. 2012, 51, 8542.
doi: 10.1002/anie.201204395 |
[22] |
Yoshida, T.; Sakamaki, D.; Seki, S.; Shinokubo, H. Chem. Commun. 2017, 53, 1112.
doi: 10.1039/C6CC09444A |
[23] |
Liu, S.; Tanaka, H.; Nozawa, R.; Fukui, N.; Shinokubo, H. Chem.-Eur. J. 2019, 25, 7618.
doi: 10.1002/chem.201901292 |
[24] |
Yoshida, T.; Takahashi, K.; Ide, Y.; Kishi, R.; Fujiyoshi, J.; Lee, S.; Hiraoka, Y.; Kim, D.; Nakano, M.; Ikeue, T.; Yamada, H.; Shinokubo, H. Angew. Chem., Int. Ed. 2018, 57, 2209.
doi: 10.1002/anie.201712961 |
[25] |
Murakami, K.; Yamamoto, Y.; Yorimitsu, H.; Osuka, A. Chem.-Eur. J. 2013, 19, 9123.
doi: 10.1002/chem.201301146 pmid: 23740546 |
[26] |
Yonezawa, T.; Shafie, S. A.; Hiroto, S.; Shinokubo, H. Angew. Chem., Int. Ed. 2017, 56, 11822.
doi: 10.1002/anie.201706134 |
[27] |
Zhang, S.; Zhang, D.; Liebeskind, L. S. J. Org. Chem. 1997, 62, 2312.
doi: 10.1021/jo9700078 |
[28] |
Yoshida, T.; Shafie, S. A.; Kawashima, H.; Fukui, N.; Shinokubo, H. Org. Lett. 2021, 23, 2826.
doi: 10.1021/acs.orglett.1c00823 |
[29] |
Kido, H.; Shin, J. Y.; Shinokubo, H. Angew. Chem., Int. Ed. 2013, 52, 13727.
doi: 10.1002/anie.201306905 |
[30] |
Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722.
doi: 10.1021/ja9925305 |
[31] |
Fukuoka, T.; Uchida, K.; Sung, Y. M.; Shin, J. Y.; Ishida, S.; Lim, J. M.; Hiroto, S.; Furukawa, K.; Kim, D.; Iwamoto, T.; Shinokubo, H. Angew. Chem., Int. Ed. 2014, 53, 1506.
doi: 10.1002/anie.201309921 |
[32] |
Liu, S. Y.; Fukuoka, T.; Fukui, N.; Shin, J. Y.; Shinokubo, H. Org. Lett. 2020, 22, 4400.
doi: 10.1021/acs.orglett.0c01402 |
[33] |
Ren, D.; Smaga, O.; Fu, X.; Li, X.; Pawlicki, M.; Koniarz, S.; Chmielewski, P. J. Org. Lett. 2021, 23, 1032.
doi: 10.1021/acs.orglett.0c04227 |
[34] |
Horie, M.; Hayashi, Y.; Yamaguchi, S.; Shinokubo, H. Chem.-Eur. J. 2012, 18, 5919.
doi: 10.1002/chem.201200485 pmid: 22454294 |
[35] |
Li, X.; Sun, Y. H.; Yu, X. Y.; Tan, J. X. CN 112174972, 2021.
|
[36] |
Yoshida, T.; Shinokubo, H. Mater. Chem. Front. 2017, 1, 1853.
doi: 10.1039/C7QM00176B |
[37] |
Li, X.; Liu, B.; Yi, P.; Yi, R.; Yu, X.; Chmielewski, P. J. J. Org. Chem. 2011, 76, 2345.
doi: 10.1021/jo200040x |
[38] |
Liu, B.; Li, X.; Zhang, J.; Chmielewski, P. J. Org. Biomol. Chem. 2013, 11, 4831.
doi: 10.1039/c3ob40754c |
[39] |
Ren, D.; Fu, X.; Li, X.; Koniarz, S.; Chmielewski, P. J. Org. Chem. Front. 2019, 6, 2924.
doi: 10.1039/C9QO00679F |
[40] |
Koley, D.; Colón, O. C.; Savinov, S. N. Org. Lett. 2009, 11, 4172.
doi: 10.1021/ol901731w |
[41] |
Deng, Z.; Li, X.; Stępień, M.; Chmielewski, P. J. Chem.-Eur. J. 2016, 22, 4231.
doi: 10.1002/chem.201504584 |
[42] |
Kawashima, H.; Hiroto, S.; Shinokubo, H. J. Org. Chem. 2017, 82, 10425.
doi: 10.1021/acs.joc.7b01899 pmid: 28901152 |
[43] |
Li, S.; Smaga, O.; Sun, Y.; Li, X.; Pawlicki, M.; Sukniewiczb, M.; Chmielewski, P. J. Org. Chem. Front. 2021, 8, 3639.
doi: 10.1039/D1QO00621E |
[44] |
Shafie, S. A.; Kawashima, H.; Miyake, Y.; Shinokubo, H. ChemPlusChem 2019, 84, 623.
doi: 10.1002/cplu.201900068 pmid: 31944005 |
[45] |
Liu, B.; Li, X.; Stępień, M.; Chmielewski, P. J. Chem.-Eur. J. 2015, 21, 7790.
doi: 10.1002/chem.201500736 |
[46] |
Nozawa, R.; Yamamoto, K.; Hisaki, I.; Shin, J. Y.; Shinokubo, H. Chem. Commun. 2016, 52, 7106.
doi: 10.1039/C6CC02918C |
[47] |
Whitlock, H. W.; Hanauer, R.; Oester, M. Y.; Bower, B. K. J. Am. Chem. Soc. 1969, 91, 7485.
doi: 10.1021/ja01054a044 |
[48] |
Ukai, S.; Fukui, N.; Ikeue, T.; Shinokubo, H. Chem. Lett. 2022, 51, 590.
doi: 10.1246/cl.220122 |
[49] |
Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S. J. Org. Chem. 2005, 70, 2306.
pmid: 15760219 |
[50] |
Li, X.; Zhuang, J.; Li, Y.; Liu, H.; Wang, S.; Zhu, D. Tetrahedron Lett. 2005, 46, 1555.
doi: 10.1016/j.tetlet.2004.12.138 |
[51] |
Li, X.; Chmielewski, P. J.; Xiang, J.; Xu, J.; Jiang, L.; Li, Y.; Liu, H.; Zhu, D. J. Org. Chem. 2006, 71, 9739.
doi: 10.1021/jo0618268 |
[52] |
Fu, X.; Meng, Y.; Li, X.; Stępień, M.; Chmielewski, P. J. Chem. Commun. 2018, 54, 2510.
doi: 10.1039/C8CC00447A |
[53] |
Yokoi, H.; Wachi, N.; Hiroto, S.; Shinokubo, H. Chem. Commun. 2014, 50, 2715.
doi: 10.1039/C3CC48738E |
[54] |
Li, X.; Meng, Y.; Yi, P.; Stępień, M.; Chmielewski, P. J. Angew. Chem., Int. Ed. 2017, 56, 10810.
doi: 10.1002/anie.201705715 |
[55] |
Tanaka, T.; Osuka, A. Chem. Soc. Rev. 2015, 44, 943.
doi: 10.1039/C3CS60443H |
[56] |
Tanaka, T.; Osuka, A. Chem.-Eur. J. 2018, 24, 17188.
doi: 10.1002/chem.201802810 |
[57] |
Liu, S. Y.; Kawashima, H.; Fukui, N.; Shinokubo, H. Chem. Commun. 2020, 56, 6846.
doi: 10.1039/D0CC02543G |
[58] |
Nozawa, R.; Tanaka, H.; Cha, W. Y.; Hong, Y.; Hisaki, I.; Shimizu, S.; Shin, J. Y.; Kowalczyk, T.; Irle, S.; Kim, D.; Shinokubo, H. Nat. Commun. 2016, 7, 13620.
doi: 10.1038/ncomms13620 pmid: 27901014 |
[59] |
Nozawa, R.; Kim, J.; Oh, J.; Lamping, A.; Wang, Y.; Shimizu, S.; Hisaki, I.; Kowalczyk, T.; Fliegl, H.; Kim, D.; Shinokubo, H. Nat. Commun. 2019, 10, 3576.
doi: 10.1038/s41467-019-11467-4 pmid: 31395873 |
[60] |
Kawashima, H.; Ukai, S.; Nozawa, R.; Fukui, N.; Fitzsimmons, G.; Kowalczyk, T.; Fliegl, H.; Shinokubo, H. J. Am. Chem. Soc. 2021, 143, 10676.
doi: 10.1021/jacs.1c04348 |
[61] |
Ukai, S.; Takamatsu, A.; Nobuoka, M.; Tsutsui, Y.; Fukui, N.; Ogi, S.; Seki, S.; Yamaguchi, S.; Shinokubo, H. Angew. Chem., Int. Ed. 2022, 61, e202114230.
|
[1] | Fakai Zou, Nengzhong Wang, Hui Yao, Hui Wang, Mingguo Liu, Nianyu Huang. Regio- and Stereo-selective Synthesis of 1β-/3R-Aryl Thiosugar [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 593-604. |
[2] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[3] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[4] | Penghui Li, Qingyang Xie, Fuxian Wan, Yuanhong Zhang, Lin Jiang. Synthesis and Fungicidal Activity of Novel Substituted Pyrimidine-5-carboxamides Bearing Cyclopropyl Moiety [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 650-656. |
[5] | Weiqing Yang, Yanbing Ge, Yuanyuan Chen, Ping Liu, Haiyan Fu, Menglin Ma. Design and Synthesis of Fluorescent 1,8-Napthalimide Derivatives and Their Identification of Cysteine [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 180-194. |
[6] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[7] | Shan Chen, Zhilin Chen, Qiong Hu, Yanshuang Meng, Yue Huang, Pingfang Tao, Liru Lu, Guobao Huang. Recognition of Bis-thiourea Tweezers to Neutral Molecules in Non-Polar Solvent [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 277-281. |
[8] | Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258. |
[9] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[10] | Cuiyun Ma, Hailan Luo, Fuhua Zhang, Dan Guo, Shuxing Chen, Fei Wang. Green Biosynthesis, Photophysical Properties and Application of 3-Pyrrolyl BODIPY [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 216-223. |
[11] | Bozhen Wang, Jie Zhang, Chunhui Nian, Mingming Jin, Miaomiao Kong, Wulan Li, Wenfei He, Jianzhang Wu. Synthesis and Antitumor Activity of 3,4-Dichlorophenyl Amides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 232-241. |
[12] | Shihang Yu, Jiawei Liu, Biyu An, Qinghua Bian, Min Wang, Jiangchun Zhong. Asymmetric Synthesis of the Contact Sex Pheromone of Neoclytus acuminatus acuminatus (Fabricius) [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 301-308. |
[13] | Yang Li, Jinding Yuan, Di Zhao. Deep Eutectic Solvent of 1,3-Dimethylurea/L-(+)-Tartaric Acid for the Green Synthesis of (E)-2-Styrylquinoline-3-carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3268-3276. |
[14] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[15] | Ruixia Cao, Yuping Jia. Synthesis and Biological Activity of Novel Pyrrolo[2,3-d]pyrimidine Derivatives Containing Coumarin [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3304-3311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||