Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (6): 1952-1962.DOI: 10.6023/cjoc202210030 Previous Articles Next Articles
李宜芳a, 王耀a,*(), 牛华伟a,*(), 陈秀金a, 李兆周a, 王永国b
收稿日期:
2022-10-24
修回日期:
2023-01-21
发布日期:
2023-02-14
基金资助:
Yifang Lia, Yao Wanga,*(), Huawei Niua,*(), Xiujin Chena, Zhaozhou Lia, Yongguo Wangb
Received:
2022-10-24
Revised:
2023-01-21
Published:
2023-02-14
Contact:
E-mail: Supported by:
Share
Yifang Li, Yao Wang, Huawei Niu, Xiujin Chen, Zhaozhou Li, Yongguo Wang. Research Progress of Sulfur Dioxide Fluorescent Probe Targeting Mitochondria[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1952-1962.
Probe | LOD | Examination range | Response time |
---|---|---|---|
1 | 13.1 nmol/L | 10~100 µmol/L | 60 s |
2 | 17 nmol/L | 0~7 mmol/L | —a |
3 | 18.1 nmol/L | 0~100 µmol/L | 100 s |
4 | 24 nmol/L | 0~20 µmol/L | 6 s |
5 | 0.46 µmol/L | 3.13~200 µmol/L | Within 30 min |
Probe | LOD | Examination range | Response time |
---|---|---|---|
1 | 13.1 nmol/L | 10~100 µmol/L | 60 s |
2 | 17 nmol/L | 0~7 mmol/L | —a |
3 | 18.1 nmol/L | 0~100 µmol/L | 100 s |
4 | 24 nmol/L | 0~20 µmol/L | 6 s |
5 | 0.46 µmol/L | 3.13~200 µmol/L | Within 30 min |
Probe | LOD | Examination range | Response time |
---|---|---|---|
6 | 16 nmol/L | 1.5~22.5 µmol/L | 2 min |
7 | 30 nmol/L | 0~0.6 equiv. | —a |
8 | 15.6 nmol/L | 0~2.5 µmol/L | 13 min |
9 | 0.37 µmol/L | 0.01~0.15 mmol/L | —a |
10 | 85 nmol/L | 0~3 equiv. | 20 s |
11 | 0.066 mmol/L/ 0.079 mmol/L | 0~15 μmol/L/ 2~30 μmol/L | 5 min |
12 | 0.21 μmol/L | 0~50 μmol/L | 2 min |
13 | 0.09 μmol/L | 0~400 μmol/L | —a |
14 | 0.57 µmol/L | —a | 150 s |
15 | 0.17 µmol/L | 0~5 µmol/L | 30 s |
16 | 138 nmol/L | 0~10 µmol/L | 15 min |
17 | 4.13 nmol/L | 15~45 µmol/L | 300 s |
Probe | LOD | Examination range | Response time |
---|---|---|---|
6 | 16 nmol/L | 1.5~22.5 µmol/L | 2 min |
7 | 30 nmol/L | 0~0.6 equiv. | —a |
8 | 15.6 nmol/L | 0~2.5 µmol/L | 13 min |
9 | 0.37 µmol/L | 0.01~0.15 mmol/L | —a |
10 | 85 nmol/L | 0~3 equiv. | 20 s |
11 | 0.066 mmol/L/ 0.079 mmol/L | 0~15 μmol/L/ 2~30 μmol/L | 5 min |
12 | 0.21 μmol/L | 0~50 μmol/L | 2 min |
13 | 0.09 μmol/L | 0~400 μmol/L | —a |
14 | 0.57 µmol/L | —a | 150 s |
15 | 0.17 µmol/L | 0~5 µmol/L | 30 s |
16 | 138 nmol/L | 0~10 µmol/L | 15 min |
17 | 4.13 nmol/L | 15~45 µmol/L | 300 s |
Probe | LOD | Examination range | Response time |
---|---|---|---|
18 | 43 nmol/L | 0~90 µmol/L | 10 s |
19 | 46 nmol/L | 0~0.5 µmol/L | —a |
20 | 2 nmol/L | —a | 60 s |
21 | 26.7 nmol/L | 1~4 µmol/L | 2 min |
22 | 0.04 µmol/L | 0~6 µmol/L | 7 min |
23 | 0.0126 µmol/L | —a | 35 s |
Probe | LOD | Examination range | Response time |
---|---|---|---|
18 | 43 nmol/L | 0~90 µmol/L | 10 s |
19 | 46 nmol/L | 0~0.5 µmol/L | —a |
20 | 2 nmol/L | —a | 60 s |
21 | 26.7 nmol/L | 1~4 µmol/L | 2 min |
22 | 0.04 µmol/L | 0~6 µmol/L | 7 min |
23 | 0.0126 µmol/L | —a | 35 s |
Probe | LOD | Examination range | Response time |
---|---|---|---|
24 | 0.39 µmol/L | 0.5~1.5 μmol/L | 5 s |
25 | 3.2 μmol/L | 0~4 equiv. | —a |
26 | 0.86 μmol/L | 2~20 μmol/L | —a |
27 | 0.73 μmol/L | —a | 5 s |
28 | 0.067 μmol/L | 0.5~40 μmol/L | 10 s |
29 | 103 nmol/L | 0~10 μmol/L | 5 s |
30 | 27.22 μmol/L | —a | 20 s |
31 | 0.82 μmol/L | 1~15 μmol/L | 10 s |
32 | 0.23 μmol/L | 30~70 μmol/L | —a |
33 | 3 nmol/L | 0~100 μmol/L | 4 min |
34 | 0.3 μmol/L | 0~200 μmol/L | —a |
35 | 0.047 μmol/L | 50~90 μmol/L | 2 min |
36 | 0.01 μmol/L | 0~12 μmol/L | — |
Probe | LOD | Examination range | Response time |
---|---|---|---|
24 | 0.39 µmol/L | 0.5~1.5 μmol/L | 5 s |
25 | 3.2 μmol/L | 0~4 equiv. | —a |
26 | 0.86 μmol/L | 2~20 μmol/L | —a |
27 | 0.73 μmol/L | —a | 5 s |
28 | 0.067 μmol/L | 0.5~40 μmol/L | 10 s |
29 | 103 nmol/L | 0~10 μmol/L | 5 s |
30 | 27.22 μmol/L | —a | 20 s |
31 | 0.82 μmol/L | 1~15 μmol/L | 10 s |
32 | 0.23 μmol/L | 30~70 μmol/L | —a |
33 | 3 nmol/L | 0~100 μmol/L | 4 min |
34 | 0.3 μmol/L | 0~200 μmol/L | —a |
35 | 0.047 μmol/L | 50~90 μmol/L | 2 min |
36 | 0.01 μmol/L | 0~12 μmol/L | — |
[1] |
Li, G.; Chen, Y.; Wang, J.; Lin, Q.; Zhao, J.; Ji, L.; Chao, H. Chem. Sci. 2013, 4, 4426.
doi: 10.1039/c3sc52301b |
[2] |
Jia, L.; Niu, L. Y.; Yang, Q. Z. Anal. Chem. 2020, 92, 10800.
doi: 10.1021/acs.analchem.0c02255 pmid: 32605361 |
[3] |
Jana, P.; Patel, N.; Soppina, V.; Kanvah, S. New J. Chem. 2019, 43, 584.
doi: 10.1039/C8NJ04669G |
[4] |
Li, X.; Jin, D.; Du, Y.; Liu, Y.; Wang, B.; Chen, L. Anal. Methods 2018, 10, 4695.
doi: 10.1039/C8AY01556B |
[5] |
Taylor, S. L.; Higley, N. A.; Bush, R. K. Adv. Food Res. 1986, 30, 1.
pmid: 3526827 |
[6] |
Mcfeeters, R. F. J. Food Prot. 1998, 61, 885.
doi: 10.4315/0362-028X-61.7.885 |
[7] |
Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973.
doi: 10.1038/nchem.1500 |
[8] |
Reist, M.; Jenner, P.; Halliwell, B. FEBS Lett. 1988, 423, 231.
doi: 10.1016/S0014-5793(98)00099-4 |
[9] |
Sang, N.; Yun, Y.; Li, H.; Hou, L.; Han, M.; Li, G. Toxicol. Sci 2010, 114, 226.
doi: 10.1093/toxsci/kfq010 pmid: 20083630 |
[10] |
Sun, M.; Yu, H.; Zhang, K.; Zhang, Y.; Yan, Y.; Huang, D.; Wang, S. Anal. Chem. 2014, 86, 9381.
doi: 10.1021/ac503214v |
[11] |
Ning, Z. Handbook for Analysis of Food Ingredients, China Light Industry Press, Peking, 1998, p. 51. (in Chinese)
|
(宁正祥, 食品成分分析手册, 中国轻工业出版社, 北京, 1998, p. 51.)
|
|
[12] |
Jankovskiene, G.; Daunoravicius, Z.; Padarauskas, A. J. Chromatogr. A 2001, 934, 67.
pmid: 11762765 |
[13] |
Sullivan, J. J.; Hollingworth, T. A.; Wekell, M. M.; Newton, R. T. J. -Assoc. Off. Anal. Chem. 1986, 69, 542.
|
[14] |
Thanh, N. T. K.; Decnop-Weever, L. G.; Kok, W. T.; Fresenius, J. Anal. Chem. 1994, 349, 469.
|
[15] |
Kim, H. J.; Kim, Y. K. J. Food Sci. 2006, 51, 1360.
doi: 10.1111/jfds.1986.51.issue-5 |
[16] |
Keil, R.; Hampp, R.; Ziegler, H. J. A. C. Anal. Chem. 1989, 61, 1755.
doi: 10.1021/ac00190a032 |
[17] |
Sezginturk, M. K.; Dinckaya, E. Talanta 2005, 65, 998.
doi: 10.1016/j.talanta.2004.08.037 |
[18] |
Theisen, S.; Hänsch, R.; Kothe, L.; Leist, U.; Galensa, R. Biosens. Bioelectron. 2010, 26, 175.
doi: 10.1016/j.bios.2010.06.009 pmid: 20598873 |
[19] |
Siroueinejad, A.; Abbaspour, A.; Shamsipur, M. Electroanalysis 2009, 21, 1387.
doi: 10.1002/elan.v21:12 |
[20] |
Huang, Y.; Shen, Z.; Chen, Q.; Huang, P.; Zhang, H.; Du, S.; Geng, B.; Zhang, C.; Li, K.; Tang, C.; Du, J.; Jin, H. Sci. Rep. 2016, 6, 19503.
doi: 10.1038/srep19503 |
[21] |
Zhang, D.; Wang, X.; Tian, X.; Zhang, L.; Yang, G.; Tao, Y.; Liang, C.; Li, K.; Yu, X.; Tang, X.; Tang, C.; Zhou, J.; Kong, W.; Du, J.; Huang, Y.; Jin, H. Front Immunol. 2018, 9, 882.
doi: 10.3389/fimmu.2018.00882 pmid: 29760703 |
[22] |
Chen, G.; Zhou, W.; Zhao, C.; Liu, Y.; Chen, T.; Li, Y.; Tang, B. Anal. Chem. 2018, 90, 12442.
doi: 10.1021/acs.analchem.8b01505 |
[23] |
Yan, Y. H.; He, X. Y.; Miao, J. Y.; Zhao, B. X. J. Mater. Chem. B 2019, 7, 6585.
doi: 10.1039/C9TB01686D |
[24] |
Zhou, F.; Sultanbawa, Y.; Feng, H.; Wang, Y. L.; Meng, Q.; Wang, Y.; Zhang, Z.; Zhang, R. J. Agric. Food Chem. 2019, 67, 4375.
doi: 10.1021/acs.jafc.8b07110 |
[25] |
Zeng, L.; Chen, T.; Chen, B. Q.; Yuan, H. Q.; Sheng, R.; Bao, G. M. J. Mater. Chem. B 2020, 8, 1914.
doi: 10.1039/C9TB02593F |
[26] |
Zeng, R. F.; Lan, J. S.; Wu, T.; Liu, L.; Liu, Y.; Ho, R. J. Y.; Ding, Y.; Zhang, T. Food Chem 2020, 318, 126358.
doi: 10.1016/j.foodchem.2020.126358 |
[27] |
Wakelin, L. P. G.; Bu, X.; Eleftheriou, A.; Parmar, A.; Hayek, C.; Stewart, B. W. J. Med. Chem. 2003, 46, 5790.
doi: 10.1021/jm030253d |
[28] |
Zheng, H.; Chen, X.; Hu, M.; Li, D.; Xu, J. Anal. Chim. Acta 2002, 461, 235.
doi: 10.1016/S0003-2670(02)00276-3 |
[29] |
Li, D. P.; Wang, Z. Y.; Su, H.; Miao, J. Y.; Zhao, B. X. Spectrochim. Acta, Part A 2017, 53, 577.
|
[30] |
Yan, Y. H.; Cui, X. L.; Li, Z. Y.; Ding, M. M.; Che, Q. L.; Miao, J. Y.; Zhao, B. X.; Lin, Z. M. Anal. Chim. Acta 2020, 1137, 47.
doi: 10.1016/j.aca.2020.09.002 |
[31] |
Yan, Y. H.; Wu, Q. R.; Che, Q. L.; Ding, M. M.; Xu, M.; Miao, J. Y.; Zhao, B. X.; Lin, Z. M. Analyst 2020, 145, 2937.
doi: 10.1039/D0AN00086H |
[32] |
Li, D.; Tian, X.; Li, Z.; Zhang, J.; Yang, X. J. Agric. Food Chem. 2019, 67, 3062.
doi: 10.1021/acs.jafc.9b00822 |
[33] |
Yin, G.; Gan, Y.; Yu, T.; Niu, T.; Yin, P.; Chen, H.; Zhang, Y.; Li, H.; Yao, S. Talanta 2019, 191, 428.
doi: 10.1016/j.talanta.2018.08.059 |
[34] |
He, L.; Yang, Y.; Lin, W. Anal. Chem. 2019, 91, 15220.
doi: 10.1021/acs.analchem.9b04103 |
[35] |
Nie, J.; Sun, H.; Zhao, Y.; Dai, X.; Ni, Z. Spectrochim. Acta, Part A 2021, 247, 119128.
doi: 10.1016/j.saa.2020.119128 |
[36] |
Hu, W.; Zeng, L.; Zhai, S.; Li, C.; Feng, W.; Feng, Y.; Liu, Z. Biomaterials 2020, 241, 119910.
doi: 10.1016/j.biomaterials.2020.119910 |
[37] |
Venkatachalam, K.; Asaithambi, G.; Rajasekaran, D.; Periasamy, V. Spectrochim. Acta, Part A 2020, 228, 117788.
doi: 10.1016/j.saa.2019.117788 |
[38] |
Lv, M.; Zhang, Y.; Fan, J.; Yang, Y.; Chen, S.; Liang, G.; Zhang, S. Analyst 2021, 145, 7985.
doi: 10.1039/D0AN01468K |
[39] |
Li, D. P.; Tang, F.; Wen, K.; Yang, Z.; Xiao, H.; Zhou, Z. Microchem. J. 2022, 175, 107233.
doi: 10.1016/j.microc.2022.107233 |
[40] |
Zheng, D.; Zhang, T.; Huang, J.; Wang, M.; Cao, Z.; Huang, Y.; Yang, Z.; Deng, Y.; Fang, Y. Dyes Pigm. 2022, 198, 109973.
doi: 10.1016/j.dyepig.2021.109973 |
[41] |
Zhang, W., Liu, T., Huo, F.; Ning, P.; Meng, X; Yin, C. Anal. Chem. 2017, 89, 8079.
doi: 10.1021/acs.analchem.7b01580 |
[42] |
Huang, H.; Liu, W.; Liu, X. J.; Kuang, Y. Q.; Jiang, J. H. Talanta 2017, 168, 203.
doi: S0039-9140(17)30342-9 pmid: 28391843 |
[43] |
Zhang, J.; Peng, A.; Lv, Y.; Zhang, Y.; Wang, X.; Zhang, G.; Tian, Z. J. Fluoresc. 2017, 27, 1767.
doi: 10.1007/s10895-017-2115-1 pmid: 28528486 |
[44] |
Fang, G.; Yang, X.; Wang, W.; Feng, Y.; Zhang, W.; Huang, Y.; Sun, C.; Chen, M.; Meng, X. Sens. Actuators B Chem. 2019, 297, 126777.
doi: 10.1016/j.snb.2019.126777 |
[45] |
Song, G.; Liu, A.; Jiang, H.; Ji, R.; Dong, J.; Ge, Y. Anal. Chim. Acta 2019, 1053, 148.
doi: 10.1016/j.aca.2018.11.052 |
[46] |
Sun, C.; Cao, W.; Zhang, W.; Zhang, L.; Feng, Y.; Fang, M.; Xu, G.; Shao, Z.; Yang, X.; Meng, X. Dyes Pigm. 2019, 171, 107709.
doi: 10.1016/j.dyepig.2019.107709 |
[47] |
Yang, D.; He, X. Y.; Wu, X. T.; Shi, H. N.; Miao, J. Y.; Zhao, B. X.; Lin, Z. M. J. Mater. Chem. B 2020, 8, 5722.
doi: 10.1039/d0tb00149j pmid: 32514507 |
[48] |
Nawimanage, R. R.; Prasai, B.; Hettiarachchi, S. U.; McCarley, R. L. Anal. Chem. 2017, 89, 6886.
doi: 10.1021/acs.analchem.7b01384 pmid: 28511008 |
[49] |
Li, H.; Yao, Q.; Fan, J.; Du, J.; Wang, J.; Peng, X. Biosens. Bioelectron 2017, 94, 536.
doi: 10.1016/j.bios.2017.03.039 |
[50] |
Ma, Y.; Tang, Y.; Zhao, Y.; Gao, S.; Lin, W. Anal. Chem. 2017, 89, 9388.
doi: 10.1021/acs.analchem.7b02216 |
[51] |
Liu, K.; Chen, Y.; Sun, H.; Wang, S.; Kong, F. J. Mater. Chem. B 2018, 6, 7060.
doi: 10.1039/C8TB02030B |
[52] |
Ma, Y.; Gao, W.; Zhu, L.; Zhao, Y.; Lin, W. Chem. Commun. 2019, 55, 11263.
doi: 10.1039/C9CC04411F |
[53] |
Ma, Y.; Tang, Y.; Zhao, Y.; Lin, W. Anal. Chem. 2019, 91, 10723.
doi: 10.1021/acs.analchem.9b02119 |
[54] |
Ren, H.; Huo, F.; Wu, X.; Liu, X.; Yin, C. Chem. Commun. 2021, 57, 655.
doi: 10.1039/D0CC07398A |
[55] |
Wang, X. B.; Li, H. J.; Chi, Z.; Zhao, X.; Wu, Y. C. Talanta 2020, 217, 121086.
doi: 10.1016/j.talanta.2020.121086 |
[56] |
Yang, X.; Tang, J.; Zhang, D.; Han, X.; Liu, J.; Li, J.; Zhao, Y.; Ye, Y. Chem. Commun. 2020, 56, 13217.
doi: 10.1039/D0CC05803C |
[57] |
Li, F.; Tang, Y.; Guo, R.; Lin, W. Chin. J. Org. Chem. 2021, 41, 1108 (in Chinese)
doi: 10.6023/cjoc202012049 |
(李芳, 唐永和, 郭锐, 林伟英, 有机化学, 2021, 41, 1108.)
doi: 10.6023/cjoc202012049 |
|
[58] |
Chao, J.; Wang, Z.; Zhang, Y.; Huo, F.; Yin, C. Sens. Actuators, B 2021, 343, 130049.
doi: 10.1016/j.snb.2021.130049 |
[59] |
Zheng, Y.-L.; Chai, Z.-H.; Tang, W.; Yan, S.; Dai, F.; Zhou, B. Sens. Actuators, B 2021, 330, 129343.
doi: 10.1016/j.snb.2020.129343 |
[60] |
Huang, Y. F.; Zhang, Y. B.; Huo, F. J.; Chao, J. B.; Yin, C. X. Chem. Eng. J. 2022, 433, 133750.
doi: 10.1016/j.cej.2021.133750 |
[61] |
Sun, Y.; Wang, Y.; Lu, Y.; Kong, X.; Wei, H.; Chen, Q.; Yan, M.; Dong, B. Spectrochim. Acta, Part A 2022, 265, 120397.
doi: 10.1016/j.saa.2021.120397 |
[62] |
Zhang, W.; Lv, Y.; Song, H.; Huo, F.; Zhang, Y.; Yin, C. X. Chem. Commun. 2022, 58, 8524.
doi: 10.1039/D2CC03420D |
[1] | Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu, Jinbiao Liu. Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 41-53. |
[2] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[3] | Binghui Ding, Shaohui Han, Haiqing Xiong, Benhua Wang, Bojun Zuo, Xiangzhi Song. A Highly Selective Ratiometric Fluorescent Probe for the Detection of Hypochlorite in Acute Lung Injury [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2878-2884. |
[4] | Yang Zhao, Panpan Chen, Gaonan Li, Zhigang Niu, Enju Wang. Tetraarylimidazole-Based Aggregation-Induced Emission Luminogens and Their Cell-Imaging Application [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2156-2162. |
[5] | Feiran Liu, Jing Jing, Xiaoling Zhang. Research Progress of Fluorescent Probes for Cysteine Targeting Cellular Organelles [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2053-2067. |
[6] | Tiantian Liu, Hongpeng Zhang, Xiaomeng Jiao, Yinjuan Bai. Research Progress of Multi-signal Fluorescent Probes for Simultaneous Detection of Biothiols [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2081-2095. |
[7] | Zhihua Chen, Yan Hu, Lili Ma, Ziyi Zhang, Chuanxiang Liu. Rational Design of ortho-Vinylhydropyridine-Assisted Amino-fluorophore as Hypochlorite Fluorescent Probe [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 718-724. |
[8] | Hongwei Tang, Chao Wang, Keli Zhong, Shuhua Hou, Lijun Tang, Yanjiang Bian. A Naked-Eye and Fluorescent Dual-Channel Probe for Rapid Detection of Hg2+ and Its Multiple Applications [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 712-717. |
[9] | Yanhui Ma, Yuqian Wu, Xiaoxu Wang, Gui Gao, Xin Zhou. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone (DDAO) [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 94-111. |
[10] | Yaxin Yang, Lin Chen, Xiaoling Hu, Keli Zhong, Shidi Li, Xiaomei Yan, Jinglin Zhang, Lijun Tang. Synthesis of a Turn-On Fluorescent Probe for Hydrogen Sulfide and Its Application in Red Wine and Living Cells [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 308-312. |
[11] | Meng Liu, Yanru Huang, Xiaofei Sun, Lijun Tang. An “Aggregation-Induced Emission+Excited-State Intramolecular Proton Transfer” Mechanisms-Based Benzothiazole Derived Fluorescent Probe and Its ClO– Recognition [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 345-351. |
[12] | Yangyang Li, Xiaofei Sun, Xiaoling Hu, Yuanyuan Ren, Keli Zhong, Xiaomei Yan, Lijun Tang. Synthesis of Triphenylamine Derivative and Its Recognition for Hg2+ with “OFF-ON” Fluorescence Response Based on Aggregation-Induced Emission (AIE) Mechanism [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 320-325. |
[13] | Jidong Zhang, Wanlin Yan, Wenqiang Hu, Dian Guo, Dalong Zhang, Xiaoxin Quan, Xianpan Bu, Siyu Chen. Design and Synthesis of a Zn2+ Fluorescent Probe Based on Aggregation Induced Luminescence Properties [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 326-331. |
[14] | Yanqin Lai, Xue Chen, Fang Chen, Linchen Ni, Ting Wang, Ziping Zhu, Ju Man, Chunxiao Jiang, Zhenda Xie. A Lysosome-Targeted Far-Red to Near-Infrared Fluorescent Probe for Monitoring Viscosity Change During the Ferroptosis Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2850-2856. |
[15] | Chuntian Shi, Mei Yu, Aibin Wu, Jiangxiong Luo, Xiaojun Li, Ningchen Wang, Wenming Shu, Weichu Yu. A Water-Soluble Naphthalimide-Based Fluorescent Probe for Specific Sensing of Fe3+ and $\text{C}{{\text{r}}_{2}}\text{O}_{7}^{2-}$ [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2806-2813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||