Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (3): 892-913.DOI: 10.6023/cjoc202211049 Previous Articles Next Articles
Special Issue: 中国女科学家专辑
REVIEWS
收稿日期:
2022-11-30
修回日期:
2023-01-17
发布日期:
2023-01-22
通讯作者:
李艳梅
基金资助:
Tianyang Wanga, Yan-Mei Lia,b,c()
Received:
2022-11-30
Revised:
2023-01-17
Published:
2023-01-22
Contact:
Yan-Mei Li
Supported by:
Share
Tianyang Wang, Yan-Mei Li. Progress on the Synthesis and Activity of Cyclic Dinucleotides as Stimulator of Interferon Gene (STING) Agonists[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 892-913.
[1] |
Barber, G. N. Nat. Rev. Immunol. 2015, 15, 760.
doi: 10.1038/nri3921 pmid: 26603901 |
[2] |
Li, W. H.; Wu, J. J.; Wu, L.; Zhang, B. D.; Hu, H. G.; Zhao, L.; Li, Z. B.; Yu, X. F.; Li, Y. M. Biomaterials 2021, 273, 120788.
doi: 10.1016/j.biomaterials.2021.120788 |
[3] |
Wu, J. J.; Zhao, L.; Hu, H. G.; Li, W. H.; Li, Y. M. Med. Res. Rev. 2020, 40, 1117.
doi: 10.1002/med.v40.3 |
[4] |
Li, W. H.; Li, Y. M. Chem. Rev. 2020, 120, 11420.
doi: 10.1021/acs.chemrev.9b00833 |
[5] |
Danilchanka, O.; Mekalanos, J. J. Cell 2013, 154, 962.
doi: S0092-8674(13)01008-8 pmid: 23993090 |
[6] |
Shang, M.; Lu, K.; Guan, W.; Cao, S.; Ren, M.; Zhou, C. Chem- MedChem 2022, 17, e202100671.
|
[7] |
Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z. J. Science 2013, 339, 826.
doi: 10.1126/science.1229963 |
[8] |
Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z. J. Science 2013, 339, 786.
doi: 10.1126/science.1232458 |
[9] |
Su, J. Y.; Li, W. H.; Li, Y. M. Chem. Soc. Rev. 2022, 51, 7944.
doi: 10.1039/D2CS00486K |
[10] |
Wang, Z.; Xi, Z. Tetrahedron 2021, 87, 132096.
doi: 10.1016/j.tet.2021.132096 |
[11] |
Kiburu, I.; Shurer, A.; Yan, L.; Sintim, H. O. Mol. Biosyst. 2008, 4, 518.
doi: 10.1039/b719423d pmid: 18493648 |
[12] |
Hayakawa, Y.; Nagata, R.; Hirata, A.; Hyodo, M.; Kawai, R. Tetrahedron 2003, 59, 6465.
doi: 10.1016/S0040-4020(03)01045-7 |
[13] |
Gaffney, B. L.; Veliath, E.; Zhao, J.; Jones, R. A. Org. Lett. 2010, 12, 3269.
doi: 10.1021/ol101236b |
[14] |
Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B. L.; Zillinger, T.; Serganov, A. A.; Liu, Y.; Jones, R. A.; Hartmann, G.; Tuschl, T.; Patel, D. J. Cell 2013, 153, 1094.
doi: 10.1016/j.cell.2013.04.046 pmid: 23647843 |
[15] |
Wang, C.; Sinn, M.; Stifel, J.; Heiler, A. C.; Sommershof, A.; Hartig, J. S. J. Am. Chem. Soc. 2017, 139, 16154.
doi: 10.1021/jacs.7b06141 |
[16] |
(a) Cai, H.; Huang, Z. H.; Shi, L.; Sun, Z. Y.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Angew. Chem., Int. Ed. 2012, 51, 1719.
doi: 10.1002/anie.v51.7 |
(b) Huang, Z. H.; Shi, L.; Ma, J. W.; Sun, Z. Y.; Cai, H.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. J. Am. Chem. Soc. 2012, 134, 8730.
doi: 10.1021/ja211725s |
|
(c) Cai, H.; Chen, M. S.; Sun, Z. Y.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Angew. Chem., Int. Ed. 2013, 52, 6106.
doi: 10.1002/anie.201300390 |
|
(d) Cai, H.; Sun, Z. Y.; Chen, M. S.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Angew. Chem., Int. Ed. 2014, 53, 1699.
doi: 10.1002/anie.201308875 |
|
[17] |
Wu, J. J.; Li, W. H.; Chen, P. G.; Zhang, B. D.; Hu, H. G.; Li, Q. Q.; Zhao, L.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. Chem. Commun. 2018, 54, 9655.
doi: 10.1039/C8CC04860F |
[18] |
Grajkowski, A.; Takahashi, M.; Kaczyński, T.; Srivastava, S. C.; Beaucage, S. L. Tetrahedron Lett. 2019, 60, 452.
doi: 10.1016/j.tetlet.2019.01.006 |
[19] |
Li, L.; Yin, Q.; Kuss, P.; Maliga, Z.; Millan, J. L.; Wu, H.; Mitchison, T. J. Nat. Chem. Biol. 2014, 10, 1043.
doi: 10.1038/NChemBio.1661 |
[20] |
Hyodo, M.; Sato, Y.; Hayakawa, Y. Tetrahedron 2006, 62, 3089.
doi: 10.1016/j.tet.2006.01.025 |
[21] |
Yan, H.; Wang, X.; KuoLee, R.; Chen, W. Bioorg. Med. Chem. Lett. 2008, 18, 5631.
doi: 10.1016/j.bmcl.2008.08.088 |
[22] |
Zhao, J.; Veliath, E.; Kim, S.; Gaffney, B. L.; Jones, R. A. Nucleosides, Nucleotides Nucleic Acids 2009, 28, 352.
doi: 10.1080/15257770903044523 |
[23] |
(a) Corrales, L.; Glickman, L. H.; McWhirter, S. M.; Kanne, D. B.; Sivick, K. E.; Katibah, G. E.; Woo, S. R.; Lemmens, E.; Banda, T.; Leong, J. J.; Metchette, K.; Dubensky, T. W. Jr.; Gajewski, T. F. Cell Rep. 2015, 11, 1018.
doi: 10.1016/j.celrep.2015.04.031 pmid: 25959818 |
(b) Fu, J.; Kanne, D. B.; Leong, M.; Glickman, L. H.; McWhirter, S. M.; Lemmens, E.; Mechette, K.; Leong, J. J.; Lauer, P.; Liu, W.; Sivick, K. E.; Zeng, Q.; Soares, K. C.; Zheng, L.; Portnoy, D. A.; Woodward, J. J.; Pardoll, D. M.; Dubensky, T. W. Jr.; Kim, Y. Sci. Transl. Med. 2015, 7, 283ra52.
pmid: 25959818 |
|
[24] |
Knouse, K. W.; deGruyter, J. N.; Schmidt, M. A.; Zheng, B.; Vantourout, J. C.; Kingston, C.; Mercer, S. E.; McDonald, I. M.; Olson, R. E.; Zhu, Y.; Hang, C.; Zhu, J.; Yuan, C.; Wang, Q.; Park, P.; Eastgate, M. D.; Baran, P. S. Science 2018, 361, 1234.
doi: 10.1126/science.aau3369 pmid: 30072577 |
[25] |
(a) Hu, H. G.; Wu, J. J.; Zhang, B. D.; Li, W. H.; Li, Y. M. Bioconjug. Chem. 2020, 31, 2499.
doi: 10.1021/acs.bioconjchem.0c00522 |
(b) Li, W. H.; Su, J. Y.; Li, Y. M. Acc. Chem. Res. 2022, 55, 2660.
doi: 10.1021/acs.accounts.2c00360 |
|
[26] |
Smietana, M.; Kool, E. T. Angew. Chem., Int. Ed. 2002, 41, 3704.
doi: 10.1002/1521-3773(20021004)41:19【-逻*辑*与-】amp;lt;3704::AID-ANIE3704【-逻*辑*与-】amp;gt;3.0.CO;2-N |
[27] |
Wang, J.; Zhou, J.; Donaldson, G. P.; Nakayama, S.; Yan, L.; Lam, Y. F.; Lee, V. T.; Sintim, H. O. J. Am. Chem. Soc. 2011, 133, 9320.
doi: 10.1021/ja1112029 |
[28] |
Kline, T.; Jackson, S. R.; Deng, W.; Verlinde, C. L.; Miller, S. I. Nucleosides, Nucleotides Nucleic Acids 2008, 27, 1282.
doi: 10.1080/15257770802554150 pmid: 19003573 |
[29] |
Fujino, T.; Okada, K.; Isobe, H. Tetrahedron Lett. 2014, 55, 2659.
|
[30] |
Gaffney, B. L.; Jones, R. A. Org. Lett. 2014, 16, 158.
doi: 10.1021/ol403154w |
[31] |
Glick, G. D.; Ghosh, S.; Roush, W. R.; Olhava, E. J.; Jones, R. WO 2018045204, 2018.
|
[32] |
Fernicola, S.; Torquati, I.; Paiardini, A.; Giardina, G.; Rampioni, G.; Messina, M.; Leoni, L.; Del Bello, F.; Petrelli, R.; Rinaldo, S.; Cappellacci, L.; Cutruzzola, F. J. Med. Chem. 2015, 58, 8269.
doi: 10.1021/acs.jmedchem.5b01184 pmid: 26426545 |
[33] |
Pal, C.; Chakraborty, T. K.; Asian J. Org. Chem. 2017, 6, 1421.
doi: 10.1002/ajoc.v6.10 |
[34] |
Dialer, C. R.; Stazzoni, S.; Drexler, D. J.; Muller, F. M.; Veth, S.; Pichler, A.; Okamura, H.; Witte, G.; Hopfner, K. P.; Carell, T. Chemistry 2019, 25, 2089.
|
[35] |
Ikeda, K.; Yanase, Y.; Hayashi, K.; Hara-Kudo, Y.; Tsuji, G.; Demizu, Y. Bioorg. Med. Chem. Lett. 2021, 32, 127713.
doi: 10.1016/j.bmcl.2020.127713 |
[36] |
Yanase, Y.; Tsuji, G.; Nakamura, M.; Shibata, N.; Demizu, Y. Int. J. Mol. Sci. 2022, 23, 6847.
doi: 10.3390/ijms23126847 |
[37] |
Kim, D. S.; Endo, A.; Fang, F. G.; Huang, K. C.; Bao, X.; Choi, H. W.; Majumder, U.; Shen, Y. Y.; Mathieu, S.; Zhu, X.; Sanders, K.; Noland, T.; Hao, M. H.; Chen, Y.; Wang, J. Y.; Yasui, S.; TenDyke, K.; Wu, J.; Ingersoll, C.; Loiacono, K. A.; Hutz, J. E.; Sarwar, N. ChemMedChem 2021, 16, 1740.
|
[38] |
Zheng, B.; Hang, C.; Zhu, J.; Purdum, G. E.; Sezen-Edmonds, M.; Treitler, D. S.; Yu, M.; Yuan, C.; Zhu, Y.; Freitag, A.; Guo, S.; Zhu, G.; Hritzko, B.; Paulson, J.; Shackman, J. G.; He, B. L.; Fu, W.; Tai, H. C.; Ayers, S.; Park, H.; Eastgate, M. D.; Cohen, B.; Rogers, A.; Wang, Q.; Schmidt, M. A. J. Org. Chem. 2022, 87, 1934.
doi: 10.1021/acs.joc.1c01055 |
[39] |
Shanahan, C. A.; Gaffney, B. L.; Jones, R. A.; Strobel, S. A. J. Am. Chem. Soc. 2011, 133, 15578.
doi: 10.1021/ja204650q pmid: 21838307 |
[40] |
Lioux, T.; Mauny, M. A.; Lamoureux, A.; Bascoul, N.; Hays, M.; Vernejoul, F.; Baudru, A. S.; Boularan, C.; Lopes-Vicente, J.; Qushair, G.; Tiraby, G. J. Med. Chem. 2016, 59, 10253.
doi: 10.1021/acs.jmedchem.6b01300 |
[41] |
Ager, C. R.; Zhang, H.; Wei, Z.; Jones, P.; Curran, M. A.; Di Francesco, M. E. Bioorg. Med. Chem. Lett. 2019, 29, 126640.
doi: 10.1016/j.bmcl.2019.126640 |
[42] |
Wang, Z.-H.; Zhao, C.-C.; Zhang, Q.-Z.; Wang, C.-L.; Zhang, H.; Ma, D.-J.; Wang, D.-W.; Wen, X.; Li, L.-Y.; Xi, Z. Sci. China: Chem. 2020, 63, 534.
doi: 10.1007/s11426-019-9662-5 |
[43] |
Xie, X.; Liu, J.; Wang, X. Molecules 2020, 25, 5285.
doi: 10.3390/molecules25225285 |
[44] |
Tarashima, N. S.; Kumanomido, Y.; Nakashima, K.; Tanaka, Y.; Minakawa, N. J. Org. Chem. 2021, 86, 15004.
doi: 10.1021/acs.joc.1c01706 pmid: 34652132 |
[45] |
Wang, Z.; Zhao, C.; Wang, C.; Zhang, H.; Ma, D.; Zhang, Q.; Wen, X.; Li, L.; Xi, Z. Bioorg. Med. Chem. 2021, 29, 115899.
doi: 10.1016/j.bmc.2020.115899 |
[46] |
Veth, S.; Fuchs, A.; Ozdemir, D.; Dialer, C.; Drexler, D. J.; Knechtel, F.; Witte, G.; Hopfner, K. P.; Carell, T.; Ploetz, E. ChemBioChem 2022, 23, e202200005.
|
[47] |
Grajkowski, A.; Cieslak, J.; Gapeev, A.; Schindler, C.; Beaucage, S. L. Bioconjugate Chem. 2010, 21, 2147.
doi: 10.1021/bc1003857 pmid: 20942415 |
[48] |
Smith, K. D.; Shanahan, C. A.; Moore, E. L.; Simon, A. C.; Strobel, S. A. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 7757.
doi: 10.1073/pnas.1018857108 |
[49] |
Zhou, J.; Watt, S.; Wang, J.; Nakayama, S.; Sayre, D. A.; Lam, Y. F.; Lee, V. T.; Sintim, H. O. Bioorg. Med. Chem. 2013, 21, 4396.
doi: 10.1016/j.bmc.2013.04.050 |
[50] |
Kempson, J.; Zhang, H.; Hou, X.; Cornelius, L.; Zhao, R.; Wang, B.; Hong, Z.; Oderinde, M. S.; Pawluczyk, J.; Wu, D. R.; Sun, D.; Li, P.; Yip, S.; Smith, A.; Caceres-Cortes, J.; Aulakh, D.; Sarjeant, A. A.; Park, P. K.; Harikrishnan, L. S.; Qin, L. Y.; Dodd, D. S.; Fink, B.; Vite, G.; Mathur, A. J. Org. Chem. 2021, 86, 8851.
doi: 10.1021/acs.joc.1c00784 |
[51] |
Saito-Tarashima, N.; Kinoshita, M.; Igata, Y.; Kashiwabara, Y.; Minakawa, N. RSC Med. Chem. 2021, 12, 1519.
doi: 10.1039/D1MD00114K |
[52] |
Vyskocil, S.; Cardin, D.; Ciavarri, J.; Conlon, J.; Cullis, C.; England, D.; Gershman, R.; Gigstad, K.; Gipson, K.; Gould, A.; Greenspan, P.; Griffin, R.; Gulavita, N.; Harrison, S.; Hu, Z.; Hu, Y.; Hata, A.; Huang, J.; Huang, S. C.; Janowick, D.; Jones, M.; Kolev, V.; Langston, S. P.; Lee, H. M.; Li, G.; Lok, D.; Ma, L.; Mai, D.; Malley, J.; Matsuda, A.; Mizutani, H.; Mizutani, M.; Molchanova, N.; Nunes, E.; Pusalkar, S.; Renou, C.; Rowland, S.; Sato, Y.; Shaw, M.; Shen, L.; Shi, Z.; Skene, R.; Soucy, F.; Stroud, S.; Xu, H.; Xu, T.; Abu-Yousif, A. O. Zhang, J. J. Med. Chem. 2021, 64, 6902.
doi: 10.1021/acs.jmedchem.1c00374 pmid: 34000802 |
[53] |
(a) Wu, J. J.; Zhao, L.; Han, B. B.; Hu, H. G.; Zhang, B. D.; Li, W. H.; Chen, Y. X.; Li, Y. M. Chem. Commun. 2021, 57, 504.
doi: 10.1039/D0CC06959K |
(b) Zhang, B. D.; Wu, J. J.; Li, W. H.; Hu, H. G.; Zhao, L.; He, P. Y.; Zhao, Y. F.; Li, Y. M. Nano Res. 2022, 15, 6328.
doi: 10.1007/s12274-022-4282-x |
|
[54] |
Wu, J.-J.; Chen, F.-Y.; Han, B.-B.; Zhang, H.-Q.; Zhao, L.; Zhang, Z.-R.; Li, J.-J.; Zhang, B.-D.; Zhang, Y.-N.; Yue, Y.-X.; Hu, H. G.; Li, W. H.; Zhang, B.; Chen, Y. X.; Guo, D. S.; Li, Y. M. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201859.
doi: 10.31635/ccschem.022.202201859 |
[55] |
Rao, F.; Pasunooti, S.; Ng, Y.; Zhuo, W.; Lim, L.; Liu, A. W.; Liang, Z. X. Anal. Biochem. 2009, 389, 138.
doi: 10.1016/j.ab.2009.03.031 |
[56] |
Launer-Felty, K. D.; Strobel, S. A. Nucleic Acids Res. 2018, 46, 2765.
doi: 10.1093/nar/gky137 pmid: 29514227 |
[57] |
Lv, Y.; Sun, Q.; Wang, X.; Lu, Y.; Li, Y.; Yuan, H.; Zhu, J.; Zhu, D. Front Microbiol. 2019, 10, 2111.
doi: 10.3389/fmicb.2019.02111 |
[58] |
Rolf, J.; Siedentop, R.; Lutz, S.; Rosenthal, K. Int. J. Mol. Sci. 2019, 21, 105.
doi: 10.3390/ijms21010105 |
[59] |
Becker, M.; Nikel, P.; Andexer, J. N.; Lutz, S.; Rosenthal, K. Biomolecules 2021, 11, 590.
doi: 10.3390/biom11040590 |
[60] |
Sun, Q.; Lv, Y.; Zhang, C.; Wu, W.; Zhang, R.; Zhu, C.; Li, Y. Y.; Yuan, H.; Zhu, J.; Zhu, D. Enzyme Microb. Technol. 2021, 143, 109700.
doi: 10.1016/j.enzmictec.2020.109700 |
[61] |
Shchokolova, A. S.; Rymko, A. N.; Kvach, S. V.; Shabunya, P. S.; Fatykhava, S. A.; Zinchenko, A. I. Nucleosides, Nucleotides Nucleic Acids 2015, 34, 416.
doi: 10.1080/15257770.2015.1006775 pmid: 25965330 |
[62] |
Novotna, B.; Vanekova, L.; Zavrel, M.; Budesinsky, M.; Dejmek, M.; Smola, M.; Gutten, O.; Tehrani, Z. A.; Pimkova Polidarova, M.; Brazdova, A.; Liboska, R.; Stepanek, I.; Vavrina, Z.; Jandusik, T.; Nencka, R.; Rulisek, L.; Boura, E.; Brynda, J.; Pav, O.; Birkuš, G. J. Med. Chem. 2019, 62, 10676.
doi: 10.1021/acs.jmedchem.9b01062 |
[63] |
Novotna, B.; Hola, L.; Stas, M.; Gutten, O.; Smola, M.; Zavrel, M.; Vavrina, Z.; Budesinsky, M.; Liboska, R.; Chevrier, F.; Dobias, J.; Boura, E.; Rulisek, L.; Birkus, G. Biochemistry 2021, 60, 3714.
doi: 10.1021/acs.biochem.1c00692 |
[64] |
Vavřina, Z.; Perlíková, P.; Milisavljević, N.; Chevrier, F.; Smola, M.; Smith, J.; Dejmek, M.; Havlíček, V.; Buděšínský, M.; Liboska, R.; Vanekova, L.; Brynda, J.; Boura, E.; Rezacova, P.; Hocek, M.; Birkus, G. J. Med. Chem. 2022, 65, 14082.
doi: 10.1021/acs.jmedchem.2c01305 pmid: 36201304 |
[65] |
Rosenthal, K.; Becker, M.; Rolf, J.; Siedentop, R.; Hillen, M.; Nett, M.; Lütz, S. ChemBioChem 2020, 21, 3225.
doi: 10.1002/cbic.v21.22 |
[66] |
McIntosh, J. A.; Liu, Z.; Andresen, B. M.; Marzijarani, N. S.; Moore, J. C.; Marshall, N. M.; Borra-Garske, M.; Obligacion, J. V.; Fier, P. S.; Peng, F.; Forstater, J. H.; Winston, M. S.; An, C.; Chang, W.; Lim, J.; Huffman, M. A.; Miller, S. P.; Tsay, F. R.; Altman, M. D.; Lesburg, C. A.; Steinhuebel, D.; Trotter, B. W.; Cumming, J. N.; Northrup, A.; Bu, X.; Mann, B. F.; Biba, M.; Hiraga, K.; Murphy, G. S.; Kolev, J. N.; Makarewicz, A.; Pan, W.; Farasat, I.; Bade, R. S.; Stone, K.; Duan, D.; Alvizo, O.; Adpressa, D.; Guetschow, E.; Hoyt, E.; Regalado, E. L.; Castro, S.; Rivera, N.; Smith, J. P.; Wang, F.; Crespo, A.; Verma, D.; Axnanda, S.; Dance, Z. E. X.; Devine, P. N.; Tschaen, D.; Canada, K. A.; Bulger, P. G.; Sherry, B. D.; Truppo, M. D.; Ruck, R. T.; Campeau, L. C.; Bennett, D. J.; Humphrey, G. R.; Campos, K. R.; Maddess, M. L. Nature 2022, 603, 439.
doi: 10.1038/s41586-022-04422-9 |
[67] |
(a) Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Oncoimmunology 2020, 9, 1777624.
doi: 10.1080/2162402X.2020.1777624 |
(b) Motedayen Aval, L.; Pease, J. E.; Sharma, R.; Pinato, D. J. J. Clin. Med. 2020, 9, 3323.
doi: 10.3390/jcm9103323 |
|
[68] |
Luo, Z.; Liang, X.; He, T.; Qin, X.; Li, X.; Li, Y.; Li, L.; Loh, X. J.; Gong, C.; Liu, X. J. Am. Chem. Soc. 2022, 144, 16366.
doi: 10.1021/jacs.2c03266 |
[1] | Cuiyun Ma, Hailan Luo, Fuhua Zhang, Dan Guo, Shuxing Chen, Fei Wang. Green Biosynthesis, Photophysical Properties and Application of 3-Pyrrolyl BODIPY [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 216-223. |
[2] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[3] | Fei Wang, Wenbing Jin, Xianfeng Hou, Gongli Tang, Haixue Pan. In vivo Studies on the Biosynthetic Pathway of Aureonuclemycin and Identification of Key Metabolites [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2561-2566. |
[4] | Junying Zhang, Xiaojing Zhao, Ganpeng Li, Yonghui He. Electrochemical Synthesis of Masked Organoboronic Acids RB(dan) at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1815-1823. |
[5] | Yongzhou Pan, Xiujin Meng, Yingchun Wang, Muxue He. Recent Progress in Electrochemical Fixation of CO2 to Construct Carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1416-1434. |
[6] | Jiawei Huang, Xiaoman Li, Liang Xu, Yu Wei. Electrochemical Decarboxylation Coupling of α-Keto Acids with Thiophenols: A New Avenue for the Synthesis of Thioesters [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 756-762. |
[7] | Bingwen Zhang, Yuqi Lin, Yanqing Xue, Jing Wang, Wenchao Yang, Xiaofeng Wang, Wen Liu. Study on Secondary Metabolites from Fusarium graminearum [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 4003-4007. |
[8] | Haiqiong Li, Mengyun Yin, Fenfen Xie, Zhengbing Zhang, Pan Han, Linhai Jing. Synthesis of Nitrile via Electrochemical Appel Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2229-2235. |
[9] | Zhengjiang Fu, Zhenjiang Yang, Li Sun, Jian Yin, Xuezheng Yi, Hu Cai, Aiwen Lei. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 600-606. |
[10] | Xiaolong Guo, Yuxian Wang, Zhiqiang Zhao, Qing Wang, Jian Zuo, Luyao Wang. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1H)-ones and the Performance Evaluation via Electro-descriptors [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 641-649. |
[11] | Hongxia Li, Peng Chen, Zhilin Wu, Yuhan Lu, Junmei Peng, Jingyang Chen, Weimin He. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH4SCN [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3398-3404. |
[12] | Shijie Li, Qiuyue Nie, Zhenyu Ji, Huiming Hua, Gongli Tang. Combinatorial Biosynthesis Mediates the Discovery of Novel Tetracyclines with Isomerized C-4 Hydroxyl [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3297-3302. |
[13] | Zhiheng Zhao, Ming Li, Yaqin Zhou, Yonghui He, Lizhu Zhang, Ganpeng Li, Lijun Gu. Synthesis of 1,2,4-Triazoles via the Electrochemical Oxidative [3+2] Annulation [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2476-2484. |
[14] | Runqiu Lü, Wei Zhang, Lifang Yu. Recent Advances in Antitubercular Compounds Targeting Mycolic Acid Biosynthesis and Transport [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2249-2260. |
[15] | Yaqin Zhou, Zhiheng Zhao, Liang Zeng, Ming Li, Yonghui He, Lijun Gu. Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1072-1080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||