Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (11): 3745-3760.DOI: 10.6023/cjoc202303043 Previous Articles     Next Articles

高亮度近红外荧光染料研究进展

邱建文a, 刘梦a, 熊新怡a, 高勇a,b,*(), 朱虎a,c,*()   

  1. a 福建师范大学化学与材料学院 福州 350117
    b 福建师范大学 福建省高分子材料重点实验室 福建省先进材料化工基础重点实验室 福州 350117
    c 福建省师范大学 生物医学材料与组织工程闽台科技合作基地 工业生物催化福建省高校工程研究中心 医学光电科学与技术教育部重点实验室 福州 350117
  • 收稿日期:2023-03-29 修回日期:2023-06-18 发布日期:2023-07-05
  • 基金资助:
    国家自然科学基金(U1805234); 福建省自然科学基金(2021J01147); 福建省高校创新团队培育计划、福建省百人计划、中央引导地方科技专项资金(2020L3008)

Research Progress in High Brightness Near Infrared Fluorescent Dyes

Jianwen Qiua, Meng Liua, Xinyi Xionga, Yong Gaoa,b(), Hu Zhua,c()   

  1. a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117
    b Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350117
    c Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350117
  • Received:2023-03-29 Revised:2023-06-18 Published:2023-07-05
  • Contact: E-mail: gaoyong@fjnu.edu.cn; zhuhu@fjnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U1805234); Natural Science Foundation of Fujian Province(2021J01147); Program for Innovative Research Team in Science and Technology in Fujian Province University, the 100 Talents Program of Fujian Province and the Special Funds of the Central Government Guiding Local Science and Technology Development(2020L3008)

Abstract Due to the merits of near-infrared light (NIR) (650~1700 nm), such as deep tissue penetration, lower autofluore- scence interference in vivo, and little light damage to organisms, NIR dyes have been one of the research focuses in bioimaging. The narrow bandgaps of NIR dyes increase the probability of non-radiative transition of the excited state, resulting in a significant reduction of fluorescence intensity. Meanwhile, the longer conjugated hydrophobic skeleton and strong molecular charge transfer ability make NIR dyes easy to interact with external molecules, thus increasing the non-radiative energy loss and reducing the fluorescence intensity. To obtain NIR dyes with high brightness, researchers have made many improvements and modifications. From the perspective of the structure-property relationship of fluorescent dyes, the development of mainstream high-brightness near-infrared dyes is reviewed, hoping to provide assistance and guidance for the development of NIR fluorescent dyes with high-brightness.

Key words: high brightness, near infrared, fluorescence, dyes