Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (12): 4294-4302.DOI: 10.6023/cjoc202304015 Previous Articles Next Articles
ARTICLES
陈宇亮, 贺凤开, 王思云, 贾鼎成, 刘亚群, 黄毅勇*()
收稿日期:
2023-04-11
修回日期:
2023-06-22
发布日期:
2023-07-12
基金资助:
Yuliang Chen, Fengkai He, Siyun Wang, Dingcheng Jia, Yaqun Liu, Yiyong Huang*()
Received:
2023-04-11
Revised:
2023-06-22
Published:
2023-07-12
Contact:
*E-mail: Supported by:
Share
Yuliang Chen, Fengkai He, Siyun Wang, Dingcheng Jia, Yaqun Liu, Yiyong Huang. Kinetic Resolution of Aldehydes Bearing an All-Carbon Quaternary Stereocenter at the α-Position by the Antilla Allylboration[J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4294-4302.
Entry | Catalyst (x mol%) | Solvent | Temp./℃ | Time/h | Chiral-1a | 3a | C/%f | sg | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield b/% | ee1c/% | Yieldb/% | drd | ee2e/% | ||||||||
1 | (R)-CPA-3 (6) | Toluene | –60 | 21 | 45 | 39 | 47 | >20∶1 | 50 | 0.44 | 4.3 | |
2 | (R)-CPA-3 (6) | CH2Cl2 | –60 | 29 | 55 | 9 | 41 | 19.6∶1 | 18 | 0.33 | 1.6 | |
3 | (S)-CPA-3 (6) | Toluene | –60 | 21 | 44 | –37 | 26 | 11∶1 | –13 | 0.74 | 1.8 | |
4 | (S)-CPA-3 (6) | CH2Cl2 | –60 | 45 | 41 | –9 | 49 | >20∶1 | –44 | 0.17 | 2.8 | |
5 | (R)-CPA-3 (10) | Toluene | –70 | 16 | 44 | 43 | 34 | >20∶1 | 63 | 0.41 | 6.7 | |
6 | (R)-CPA-3 (10) | CH2Cl2, | –70 | 36 | 57 | 7 | 27 | >20∶1 | 17 | 0.29 | 1.5 | |
7 | (S)-CPA-3 (10) | Toluene | –70 | 21 | 52 | –22 | 36 | >20∶1 | –29 | 0.43 | 2.2 | |
8 | (R)-CPA-4 (10) | Toluene | –70 | 72 | 29 | 30 | 39 | 15∶1 | 44 | 0.41 | 3.4 | |
9 | (R)-CPA-5 (10) | Toluene | –70 | 4 | 35 | 0 | 37 | 9∶1 | 0 | 0 | 0 |
Entry | Catalyst (x mol%) | Solvent | Temp./℃ | Time/h | Chiral-1a | 3a | C/%f | sg | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield b/% | ee1c/% | Yieldb/% | drd | ee2e/% | ||||||||
1 | (R)-CPA-3 (6) | Toluene | –60 | 21 | 45 | 39 | 47 | >20∶1 | 50 | 0.44 | 4.3 | |
2 | (R)-CPA-3 (6) | CH2Cl2 | –60 | 29 | 55 | 9 | 41 | 19.6∶1 | 18 | 0.33 | 1.6 | |
3 | (S)-CPA-3 (6) | Toluene | –60 | 21 | 44 | –37 | 26 | 11∶1 | –13 | 0.74 | 1.8 | |
4 | (S)-CPA-3 (6) | CH2Cl2 | –60 | 45 | 41 | –9 | 49 | >20∶1 | –44 | 0.17 | 2.8 | |
5 | (R)-CPA-3 (10) | Toluene | –70 | 16 | 44 | 43 | 34 | >20∶1 | 63 | 0.41 | 6.7 | |
6 | (R)-CPA-3 (10) | CH2Cl2, | –70 | 36 | 57 | 7 | 27 | >20∶1 | 17 | 0.29 | 1.5 | |
7 | (S)-CPA-3 (10) | Toluene | –70 | 21 | 52 | –22 | 36 | >20∶1 | –29 | 0.43 | 2.2 | |
8 | (R)-CPA-4 (10) | Toluene | –70 | 72 | 29 | 30 | 39 | 15∶1 | 44 | 0.41 | 3.4 | |
9 | (R)-CPA-5 (10) | Toluene | –70 | 4 | 35 | 0 | 37 | 9∶1 | 0 | 0 | 0 |
[1] |
(a) Long R.; Huang J.; Gong J.; Yang Z. Nat. Prod. Rep. 2015, 32, 1584.
doi: 10.1039/C5NP00046G |
(b) Zeng X.-P.; Cao Z.-Y.; Wang Y.-H.; Zhou F.; Zhou J. Chem. Rev. 2016, 116, 7330.
doi: 10.1021/acs.chemrev.6b00094 |
|
(c) Das J. P.; Marek I. Chem. Commun. 2011, 47, 4593.
doi: 10.1039/c0cc05222a |
|
(c) Qi H.-B.; Han K.-M.; Chen S.-F. Chin. J. Chem. 2021, 39, 2699.
doi: 10.1002/cjoc.v39.10 |
|
(d) He X.-L.; Ye K.-Y.; Chin. J. Org. Chem. 2022, 42, 3434. (in Chinese)
doi: 10.6023/cjoc202200060 |
|
(何星磊, 叶克印, 有机化学, 2022, 42, 3434.)
doi: 10.6023/cjoc202200060 |
|
[2] |
(a) Jung M. E.; D'Amico D. C. J. Am. Chem. Soc. 1995, 117, 7379.
doi: 10.1021/ja00133a011 |
(b) Bando T.; Shishido K. Chem. Commun. 1996, 1357.
|
|
(c) Corey E. J.; Guzman-Perez A. Angew. Chem., Int. Ed. 1998, 37, 388.
doi: 10.1002/(ISSN)1521-3773 |
|
[3] |
Trost B. M.; Hung C.-I. J.; Jiao Z.-W. J. Am. Chem. Soc. 2019, 141, 16085.
doi: 10.1021/jacs.9b08441 |
[4] |
Vital P.; Tanner D. Org. Biomol. Chem. 2006, 4, 4292.
doi: 10.1039/b612578f |
[5] |
Kita Y.; Furukawa A.; Futamura J.; Ueda K.; Sawama Y.; Hamamoto H.; Fujioka H. J. Org. Chem. 2001, 66, 8779.
pmid: 11749606 |
[6] |
Wilson M. S.; Woo J. C. S.; Dake G. R. J. Org. Chem. 2006, 71, 4237.
doi: 10.1021/jo0604585 |
[7] |
Sonawane R. P.; Jheengut V.; Rabalakos C.; Larouche-Gauthier R.; Scott H. K.; Aggarwal V. K. Angew. Chem., Int. Ed. 2011, 50, 3760.
doi: 10.1002/anie.v50.16 |
[8] |
Lee M.; Kim D. H. Bioorg. Med. Chem. 2002, 10, 913.
doi: 10.1016/S0968-0896(01)00340-6 |
[9] |
(a) Mase N.; Tanaka F.; Barbas III C. F. Angew. Chem., Int. Ed. 2004, 43, 2420.
doi: 10.1002/anie.v43:18 pmid: 28238267 |
(b) Mukherjee S.; List B. J. Am. Chem. Soc. 2007, 129, 11336.
pmid: 28238267 |
|
(c) Brown A. R.; Kuo W.-H.; Jacobsen E. N. J. Am. Chem. Soc. 2010, 132, 9286.
doi: 10.1021/ja103618r pmid: 28238267 |
|
(d) Krautwald S.; Sarlah D.; Schafroth M. A.; Carreira E. M. Science 2013, 340, 1065.
doi: 10.1126/science.1237068 pmid: 28238267 |
|
(e) List B.; Čorić I.; Grygorenko O. O.; Kaib P. S. J.; Komarov I.; Lee A.; Leutzsch M.; Pan S. C.; Tymtsunik A. V.; van Gemmeren M. Angew. Chem., Int. Ed. 2014, 53, 282.
doi: 10.1002/anie.v53.1 pmid: 28238267 |
|
(f) Zhou H.; Wang Y.-N.; Zhang L.; Cai M.; Luo S.-Z. J. Am. Chem. Soc. 2017, 139, 3631.
doi: 10.1021/jacs.7b00437 pmid: 28238267 |
|
(g) Cruz F. A.; Dong V. M. J. Am. Chem. Soc. 2017, 139, 1029.
doi: 10.1021/jacs.6b10680 pmid: 28238267 |
|
[10] |
(a) Mo X.-B.; Hall D. G. J. Am. Chem. Soc. 2016, 138, 10762.
doi: 10.1021/jacs.6b06101 |
(b) Wright T. B.; Evans P. A. J. Am. Chem. Soc. 2016, 138, 15303.
doi: 10.1021/jacs.6b10099 |
|
(c) Trost B. M.; Hung C.-I.; Saget T.; Gnanamani E. Nat. Catal. 2018, 1, 523.
doi: 10.1038/s41929-018-0093-6 |
|
(d) Trost B. M.; Zuo Z.-J.; Wang Y.-L.; Schultz J. E. ACS Catal. 2020, 10, 9496.
doi: 10.1021/acscatal.0c02861 |
|
(e) Zhang W.-Q.; Shen H.-C. ACS Catal. 2021, 11, 11849.
doi: 10.1021/acscatal.1c03449 |
|
(f) Pan Z.-J.; Li W.-B.; Zhu S.; Liu F.; Wu H.-H.; Zhang J.-L. Angew. Chem., Int. Ed. 2021, 60, 18542.
doi: 10.1002/anie.v60.34 |
|
[11] |
Meng J.; Fan L.-F.; Han Z.-Y.; Gong L.-Z. Chem 2018, 4, 1047.
doi: 10.1016/j.chempr.2018.03.010 |
[12] |
Xu P.-W.; Liu S.-H.; Huang Z.-X. J. Am. Chem. Soc. 2022, 144, 6918.
doi: 10.1021/jacs.2c01380 |
[13] |
Gao L.; Kang B. C.; Ryu D. H. J. Am. Chem. Soc. 2013, 135, 14556.
doi: 10.1021/ja408196g |
[14] |
Xu J.; Song Y.; Yang J.; Yang B.; Su Z.; Lin L.; Feng X. Angew. Chem., Int. Ed. 2023, 62, e202217887.
doi: 10.1002/anie.v62.13 |
[15] |
Qiu Z.-W.; Long L.; Zhu Z.-Q.; Liu H.-F.; Pan H.-P.; Ma A.-J.; Peng J.-B.; Wang Y.-H.; Gao H.; Zhang X.-Z. ACS. Catal. 2022, 12, 13282.
doi: 10.1021/acscatal.2c03879 |
[16] |
Uraguchi D.; Terada M. J. Am. Chem. Soc. 2004, 126, 5356.
pmid: 15113196 |
[17] |
Akiyama T.; Itoh J.; Yokota K.; Fuchibe K. Angew. Chem., Int. Ed. 2004, 43, 1566.
doi: 10.1002/anie.v43:12 |
[18] |
(a) Xia Z.-L.; Xu-Xu Q.-F.; Zheng C.; You S.-L. Chem. Soc. Rev. 2020, 49, 286.
doi: 10.1039/C8CS00436F pmid: 34876929 |
(b) Maji R.; Mallojjala S. C.; Wheeler S. E. Chem. Soc. Rev. 2018, 47, 1142.
doi: 10.1039/C6CS00475J pmid: 34876929 |
|
(c) Parmar D.; Sugiono E.; Raja S.; Rueping M. Chem. Rev. 2014, 114, 9047.
doi: 10.1021/cr5001496 pmid: 34876929 |
|
(d) Woldegiorgis A. G.; Lin X.-F. Beilstein J. Org. Chem. 2021, 17, 2729.
doi: 10.3762/bjoc.17.185 pmid: 34876929 |
|
(e) Corte X. D.; Marigorta E. M. D.; Palacios F.; Vicario J.; Maestro A. Org. Chem. Front. 2022, 9, 6331.
doi: 10.1039/D2QO01209J pmid: 34876929 |
|
(f) Da B.-C.; Xiang S.-H.; Li S.-Y.; Tan B. Chin. J. Chem. 2021, 39, 1787.
doi: 10.1002/cjoc.v39.7 pmid: 34876929 |
|
(g) Shao Y.-D.; Cheng D.-J. ChemCatChem 2021, 13, 1271.
doi: 10.1002/cctc.v13.5 pmid: 34876929 |
|
(h) Woldegiorgis A. G.; Suleman M.; Lin X.-F. Eur. J. Org. Chem. 2022, 2022, e202200624.
doi: 10.1002/ejoc.v2022.34 pmid: 34876929 |
|
[19] |
(a) Liu W.; Yang X. Asian J. Org. Chem. 2021, 10, 692.
doi: 10.1002/ajoc.v10.4 |
(b) Petersen K. S. Asian J. Org. Chem. 2016, 5, 308.
doi: 10.1002/ajoc.v5.3 |
|
[20] |
(a) Zhu G.; Li Y.; Bao G.; Sun W.; Huang L.; Hong L.; Wang R. ACS Catal. 2018, 8, 1810.
doi: 10.1021/acscatal.7b03268 |
(b) Yamanaka M.; Hoshino M.; Katoh T.; Mori K.; Akiyama T. Eur. J. Org. Chem. 2012, 4508.
|
|
[21] |
Zhu G.-M.; Bao G.-J.; Li Y.-P.; Sun W.-S.; Li J.; Hong L.; Wang R. Angew. Chem., Int. Ed. 2017, 56, 5332.
doi: 10.1002/anie.v56.19 |
[22] |
Shimoda Y.; Yamamoto H. J. Am. Chem. Soc. 2017, 139, 6855.
doi: 10.1021/jacs.7b03592 |
[23] |
(a) James B. R.; Young C. G. J. Organomet. Chem. 1985, 285, 321.
doi: 10.1016/0022-328X(85)87377-0 pmid: 12197729 |
(b) Tanaka K.; Fu G. C. J. Am. Chem. Soc. 2002, 124, 10296.
pmid: 12197729 |
|
[24] |
Jain P.; Antilla J. C. J. Am. Chem. Soc. 2010, 132, 11884.
doi: 10.1021/ja104956s |
[25] |
For reviews, see: (a) Barrio, P.; Rodríguez, E.; Fustero, S. Chem. Rec. 2016, 16, 2046.
doi: 10.1002/tcr.v16.4 |
(b) Sedgwick D. M.; Grayson M. N.; Fustero S.; Barrio P. Synthesis 2018, 50, 1935.
doi: 10.1055/s-0036-1589532 |
|
For selected examples see:
|
|
(c) Gao S.; Duan M.; Andreola L. R.; Yu P.; Wheeler S. E.; Houk K. N.; Chen M. Angew. Chem., Int. Ed. 2022, 61, e202208908.
doi: 10.1002/anie.v61.41 |
|
(d) Gao S.; Duan M.; Liu J.; Yu P.; Houk K. N.; Chen M. Angew. Chem., Int. Ed. 2021, 60, 24096.
doi: 10.1002/anie.v60.45 |
|
(e) Gao S.; Duan M.; Houk K. N.; Chen M. Angew. Chem., Int. Ed. 2020, 59, 10540.
doi: 10.1002/anie.v59.26 |
|
(f) Gao S.; Duan M.; Shao Q.; Houk K. N.; Chen M. J. Am. Chem. Soc. 2020, 142, 18355.
doi: 10.1021/jacs.0c04107 |
|
[26] |
(a) Huang Y.-Y.; Yang X.; Lv Z.-C.; Cai C.; Kai C.; Pei Y.; Feng Y. Angew. Chem., Int. Ed. 2015, 54, 7299.
doi: 10.1002/anie.v54.25 |
(b) Yang X.; Pang S.; Cheng F.; Zhang Y.; Lin Y.-W.; Yuan Q.; Zhang F.-L.; Huang Y.-Y. J. Org. Chem. 2017, 82, 10388.
doi: 10.1021/acs.joc.7b01856 |
|
(c) Zhang Y.-L.; He B.-J.; Xie Y.-W.; Wang Y.-H.; Wang Y.-L.; Shen Y.-C.; Huang Y.-Y. Adv. Synth. Catal. 2019, 361, 3074.
doi: 10.1002/adsc.v361.13 |
|
(d) Zhang Y.-L.; Zhao Z.-N.; Li W.-L.; Li J.-J.; Kalita S. J.; Schneider U.; Huang Y.-Y. Chem. Commun. 2020, 56, 10030.
doi: 10.1039/D0CC00367K |
|
[27] |
Lu Y.; Kriche M. J. Org. Lett. 2009, 11, 3108.
doi: 10.1021/ol901096d |
[28] |
(a) Sullivan J. M. WO 2000007968, 2000.
|
(b) Coxon T. J.; Fernández M.; Barwick-Silk J.; McKay A. I.; Britton L. E.; Weller A. S.; Willis M. C. J. Am. Chem. Soc. 2017, 139, 10142.
doi: 10.1021/jacs.7b05713 |
|
[29] |
(a) Klussmann M.; List B.; Ratjen L.; Hoffmann S.; Wakchaure V.; Goddard R. Synlett 2010, 2189.
|
(b) Kobayashi S.; Kusakabe K.; Komiyama S.; Ishitani H. J. Org. Chem. 1999, 64, 4220.
doi: 10.1021/jo9902300 |
[1] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[2] | Huijuan Hu, Qiaoli Yan, Xiaogang Lu, Qifan Yang, Chengxin Pei, Hongmei Wang, Runli Gao. Kinetic Resolution of Racemic P-Chiral α-Hydroxymethylphos-phonates Catalyzed by Lipase from Porcine Pancreas [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2815-2825. |
[3] | Yangyang Chu, Zhaobin Han, Kuiling Ding. Progresses in the Application of Kinetic Resolution in Transition Metal Catalyzed Asymmetric (Transfer) Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1934-1951. |
[4] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[5] | Xun Xiang, Zhaolin He, Xiuqin Dong. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 791-808. |
[6] | Shouyi Cen, Zhipeng Zhang. Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2574-2581. |
[7] | Yunrong Chen, Wei Liu, Xiaoyu Yang. Recent Advances in Kinetic Resolution of Tertiary Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 679-697. |
[8] | Lingjie Fan, Tao Zhou, Xu Yang, Mengxue Jiang, Xinquan Hu, Bingfeng Shi. Pd(II)-Catalyzed Enantioselective C—H Olefination of 2-(Arylsulfinyl)pyridines through Kinetic Resolution [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3405-3418. |
[9] | Hui Li, Liang Yin. Research Progress on Catalytic Asymmetric Synthesis of P-Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3183-3200. |
[10] | Huachao Liu, Chong Shen, Xin Chang, Chunjiang Wang. Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions with Kinetic Resolution [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3322-3334. |
[11] | Tang Liang, Li Xuewei, Xie Fang, Zhang Wanbin. Catalytic Kinetic Resolution of Amines and Their Derivatives by Non-acylation Reaction [J]. Chinese Journal of Organic Chemistry, 2020, 40(3): 575-588. |
[12] | Zhang Qiying, Zhang Yiming, Hao Erjun, Bai Juan, Qu Guirong, Guo Haiming. Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution for the Construction of Carbocyclic N3-Purine Nucleosides [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 376-383. |
[13] | Wang Cai, Zhou Feng, Zhou Jian. Recent Advances in the Enantioselective Copper(I)-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3065-3077. |
[14] | Zhou Qiwen, Feng Xiangqing, Yang Jing, Du Haifeng. Asymmetric Transfer Hydrogenations of β-Enamine Cyanide with Chiral Ammonia Borane [J]. Chin. J. Org. Chem., 2019, 39(8): 2188-2195. |
[15] | Ni Guowei, Tang Jiawei, Zou Jie, Chen Shaoxin, Ju Dianwen, Zhang Fuli. Recent Advances on Carbonyl Reductases for Dynamic Kinetic Resolution [J]. Chin. J. Org. Chem., 2019, 39(2): 339-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||