Chinese Journal of Organic Chemistry ›› 2019, Vol. 39 ›› Issue (12): 3414-3437.DOI: 10.6023/cjoc201906015 Previous Articles Next Articles
Special Issue: 荧光探针-生物传感合辑; 有机超分子化学合辑
石岩a, 于有伟a, 薛林b, 王延风b
收稿日期:
2019-06-13
修回日期:
2019-07-05
发布日期:
2019-07-24
通讯作者:
石岩, 王延风
E-mail:wyfshiwoya@126.com;shiyansdu@163.com
基金资助:
Shi Yana, Yu Youweia, Xue Linb, Wang Yanfengb
Received:
2019-06-13
Revised:
2019-07-05
Published:
2019-07-24
Supported by:
Share
Shi Yan, Yu Youwei, Xue Lin, Wang Yanfeng. Progress of Fluorescent Probes with Perylene Tetracarboxylic Diimide as Chromophore[J]. Chinese Journal of Organic Chemistry, 2019, 39(12): 3414-3437.
[1] Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76, 2386. [2] Jozeliunaite, A.; Striela, R.; Labanauskas, L.; Orentas, E. Synthesis 2017, 49, 5176. [3] Pasaogullari, N.; Icil, H.; Demuth, M. Dyes Pigm. 2006, 69, 118. [4] Gao, G.; Liang, N.; Geng, H.; Jiang, W.; Fu, H.; Feng, J.; Hou, J.; Feng, X.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15914. [5] Wang, H.; Chen, L.; Xiao, Y. J. Mater. Chem. C 2017, 5, 12816. [6] Liu, Y.; Cole, M. D.; Jiang, Y.; Kim, P. Y.; Nordlund, D.; Emrick, T.; Russell, T. P. Adv. Mater. 2018, 30, 1705976. [7] Villafiorita-Monteleone, F.; Kozma, E.; Giovanella, U.; Catellani, M.; Paolino, M.; Collico, V.; Colombo, M.; Cappelli, A.; Botta, C. Dyes Pigm. 2018, 149, 331. [8] Türkmen, G.; Erten-Ela, S.; Icli, S. Dyes Pigm. 2009, 83, 297. [9] Wang, B.; Yu, C. Angew. Chem. 2010, 122, 1527. [10] Wang, B.; Zhu, Q.; Liao, D.; Yu, C. J. Mater. Chem. 2011, 21, 4821. [11] Wang, B.; Jiao, H.; Li, W.; Liao, D.; Wang, F.; Yu, C. Chem. Commun. 2011, 47, 10269. [12] Würthner, F. Chem. Commun. 2004, 1564. [13] Guo, X.; Zhang, D.; Zhu, D. Adv. Mater. 2004, 2, 125. [14] Lin, J.; Zhu, C.; Liu, J.; Chen, B.; Zhang, Y.; Xue, J.; Liu, J. Chin. J. Chem. 2014, 32, 1116. [15] Wang, H.; Wang, D.; Wang, Q.; Li, X.; Schalley, C. Org. Biomol. Chem. 2010, 8, 1017. [16] Cheng, H.; Qian, Y. Dyes Pigm. 2015, 112, 317. [17] He, X.; Liu, H.; Li, Y.; Wang, S.; Li, Y.; Wang, N.; Xiao, J.; Xu, X.; Zhu, D. Adv. Mater. 2005, 17, 2811. [18] Feng, X.; An, Y.; Yao, Z.; Li, C.; Shi, G. ACS Appl. Mater. Interfaces 2012, 4, 614. [19] Zhong, L.; Xing, F.; Bai, Y.; Zhao, Y.; Zhu, S. Spectrochim. Acta, Part A 2013, 115, 370. [20] Wang, Y.; Zhang, L.; Zhang, G.; Wu, Y.; Wu, S.; Yu, J.; Wang, L. Tetrahedron Lett. 2014, 55, 3218. [21] Fu, L.-N.; Qiao, Z. R.; Jin, X.; Li, L. R. Chem. Res. Appl. 2019, 31, 624(in Chinese). (付丽娜, 乔振蕊, 金鑫, 李林容, 化学研究与应用, 2019, 31, 624.) [22] Che, Y.; Yang, X.; Zang, L. Chem. Commun. 2008, 1413. [23] Ruan, Y.; Li, A.; Zhao, J.; Shen, J.; Jiang, Y. Chem. Commun. 2010, 46, 4938. [24] Fang, H.; Shellaiah, M.; Sinhg, A.; Raju Ramakrishnam, M. V.; Wu, Y.; Lin, H. Sens. Actuators, B 2014, 194, 229. [25] Liu, K.; Xu, Z.; Yin, M.; Yang, W.; He, B.; Wei, W.; Shen, J. J. Mater. Chem. B 2014, 2, 2093. [26] Han, A.; Liu, X.; Prestwich, G. D.; Zang, L. Sens. Actuators, B 2014, 198, 274. [27] Malkongu, S.; Erdemir, S. Dyes Pigm. 2015, 113, 763. [28] Erdemir, S.; Kocyigit, O.; Karakurt, S. Sens. Actuators, B 2015, 220, 381. [29] Li, J.; Wu, Y.; Song, F.; Wei, G.; Cheng, Y.; Zhu, C. J. Mater. Chem. 2012, 22, 478. [30] Zhao, X.; Gong, L.; Wu, Y.; Zhang, X.; Xie, J. Talanta 2016, 149, 98. [31] Zhou, R.; Li, B.; Wu, N.; Gao, G.; You, J.; Lan, J. Chem. Commun. 2011, 47, 6668. [32] Wang, H.; Lang, Y.; Wang, H.; Lou, J.; Guo, H.; Li, X. Tetrahedron 2014, 70, 1997. [33] Zhang, L.; Wang, Y.; Yu, J.; Zhang, G.; Cai, X.; Wu, Y.; Wang, L. Tetrahedron Lett. 2013, 54, 4019. [34] Kumar, K.; Bhargava, G.; Kumar, S.; Singh, P. New J. Chem. 2018, 42, 1010. [35] Singh, P.; Mittal, L. S.; Vanita, V.; Kumar, K.; Walia, A.; Bhargava, G.; Kumar, S. J. Mater. Chem. B 2016, 4, 3750. [36] Malkondu, S. Tetrahedron 2014, 70, 5580. [37] Liu, X.; Zhang, N.; Zhou, J.; Chang, T.; Fang, C.; Shangguan, D. Analyst 2013, 138, 901. [38] You, S.; Cai, Q.; Müillen, K.; Yang, W.; Yin, M. Chem. Commun. 2014, 50, 823. [39] Wan, S.; Zheng, Y.; Shen, J.; Yang, W.; Yin, M. ACS Appl. Mater. Interfaces 2014, 6, 19515. [40] Shen, Y.; Ma, X.; Zhang, B.; Zhou, Z.; Sun, Q.; Jin, E.; Sui, M.; Tang, J.; Wang, J.; Fan, M. Chem.-Eur. J. 2011, 17, 5319. [41] Wu, Y.; Zhang, X.; Li, J.; Zhang, C.; Liang, H.; Mao, G.; Zhou, L.; Tan, W.; Yu, R. Anal. Chem. 2014, 86, 10389. [42] Ling, J.; Naren, G.; Kelly, J.; Moody, T. S.; Prasanna de Silva, A. J. Am. Chem. Soc. 2015, 137, 3763. [43] Huang, L.; Chang, T. S.-W. Chem. Commun. 2011, 47, 2291. [44] Aigner, D.; Borisov, S. M.; Petritsch, P.; Klimant, I. Chem. Commun. 2013, 49, 2139. [45] Aigner, D.; Freunberger, S. A.; Wilkening, M.; Saf, R.; Borisov, S. M.; Klimant, I. Anal. Chem. 2014, 86, 9293. [46] Ma, Y.; Li, J.; Hou, S.; Zhang, J.; Shi, Z.; Jiang, T.; Wei, X. New J. Chem. 2016, 40, 6615. [47] Ye, F.; Liang, X.; Wu, N.; Li, P.; Chai, Q.; Fu, Y. Spectrochim. Acta, Part A 2019, 216, 359. [48] Georgiev, N. I.; Said, A. I.; Toshkova, R. A.; Tzoneva, D.; Bojinov, V. B, Dyes Pigm. 2019, 160, 28. [49] Aigner, D.; Dmitriev, R. I.; Borisov, S. M.; Papkovsky, D. B.; Klimant, I. J. Mater. Chem. B 2014, 2, 6792. [50] Zhang, W.; Gan, S. Y.; Li, F.; Han, D.; Zhang, Q.; Niu, L. RSC Adv. 2015, 5, 2207. [51] Pacheco-Liňán, P.; Moral, M.; Nueda, M. L.; Cruz-Sánchez, R.; Fernández-Sainz, J.; Garzón-Ruiz, A.; Bravo, I.; Melguizo, M.; Laborda, J.; Albaladejo, J. Phys. Chem. C 2017, 121, 24786. [52] You, S.; Cai, Q.; Müllen, K.; Yang, W.; Yin, M. Chem. Commun. 2014, 50, 823. [53] Roy, A.; Saha, T.; Talukdar, P. Tetrahedron Lett. 2015, 56, 4975. [54] Cho, E. J.; Yeo, H. M.; Ryu, B. J.; Jeong, H. A.; Nam, K. C. Bull. Korean Chem. Soc. 2006, 27, 1967. [55] Chen, Z.; Wang, L.; Zou, G.; Zhang, L.; Zhang, G.; Cai, X.; Teng, M. Dyes Pigm. 2012, 94, 410. [56] Li, G.; Zhao, Y.; Li, J.; Cao, J.; Zhu, J.; Sun, X.; Zhang, Q. J. Org. Chem. 2015, 80, 196. [57] Wang, R.; Li, J.; Li, G.; Hao, C.; Zhang, Y.; Wang, S.; Zhao, J.; Liu, Q.; Shi, Z. Dyes Pigm. 2018, 156, 225. [58] Maiti, D. K.; Roy, S.; Datta, A.; Banerjee, A. Chem. Phys. Lett. 2013, 588, 76. [59] Googson, F.; Panda, D.; Ray, S.; Mitra, A.; Guha, S.; Saha, S. Org. Biomol. Chem. 2013, 11, 4797. [60] Du, F.; Bao, Y.; Liu, B.; Tian, J.; Li, Q.; Bai, R. Chem. Commun. 2013, 49, 4631. [61] Gao, T.; Zhou, W.; Zhao, Y.; Chang, W.; Musendo, R.; Chen, E.; Song, Y.; Ren, X. Chem. Commun. 2019, 55, 3012. [62] Sudhakar, P.; Neena, K.; Thilagar, P. Dalton Trans. 2019, 48, 7218. [63] Fu, Y.; Tang, H.; Liu, Z.; Zhang, W. X.; Ren, J. Chin. J. Org. Chem. 2018, 38, 1806(in Chinese). (付怡, 唐辉, 刘泽, 张万轩, 任君, 有机化学, 2018, 38, 1806.) [64] Liu, Y.; Wang, K.; Guo, D.; Jiang, B. Adv. Funct. Mater. 2009, 19, 2230. [65] Peng, H.; Ding, L.; Liu, T.; Chen, X.; Li, L.; Yin, S.; Fang, Y. Chem.-Asian J. 2012, 7, 1576. [66] Zhang, J.; Liu, K.; Wang, G.; Shang, C.; Peng, H.; Liu, T.; Fang, Y. New J. Chem. 2018, 42, 12737. [67] Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149. [68] Deng, Q.; Zhou, E.; Huang, Y.; Qing, W.; Zhai, H.; Liu, Z.; Wei, Z. Chem. Commun. 2019, 55, 4379. [69] Ji, S.; Wang, H.; Wang, T.; Yan, D. Adv. Mater. 2013, 25, 1755. [70] Kalita, A.; Hussain, S.; Malik, A. H.; Subbarao, N. V. V.; Iyer, P. K. J. Mater. Chem. C 2015, 3, 10767. [71] Huang, Y.; Liu, X.; Wang, Q.; Fu, J.; Zhao, L.; Liu, Z.; Jin, D. J. Mater. Chem. C 2017, 5, 7644. [72] Wang, J.; He, E.; Liu, X.; Yu, L.; Wang, H.; Zhang, H.; Zhang, H. Sens. Actuators, B 2017, 239, 898. [73] Wang, K.; Yang, H.; Qian, X.; Xue, Z.; Li, Y.; Liu, H.; Li, Y. Dalton Trans. 2014, 43, 11542. [74] Liu, X.; Zhai, H.; Zhang, S.; Fu, J.; Huang, Y. Sens. Actuators, B 2017, 243, 500. [75] Zhu, P.; Wang, Y.; Ma, P.; Li, S.; Fan, F.; Cui, K.; Ge, S.; Zhang, Y.; Yu, J. Anal. Chem. 2019, 91, 5591. [76] Acikbas, Y.; Erdogan, M.; Capan, R.; Yukruk, F. Sens. Actuators, B 2014, 200, 61. [77] Sun, Q.; Lü, Y.; Liu, L.; Liu, K.; Miao, R.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 29128. [78] Abdalla, M. A.; Bayer, J.; Rädler, J. O.; Müllen, K. Angew. Chem., Int. Ed. 2004, 43, 3967. [79] Aubert, Y.; Asseline, U. Org. Biomol. Chem. 2004, 2, 3496. [80] Rahe, N.; Rinn, C.; Carell, T. Chem. Commun. 2003, 2120. [81] Bevers, S.; Schutte, S.; Mclaughlin, L. W. J. Am. Chem. Soc. 2000, 122, 5905. [82] Zheng, Y.; Long, H.; Schatz, G. C.; Lewis, F. D. Chem. Commun. 2005, 4795. [83] Wagner, C.; Wagenknecht, H.-A. Org Lett. 2006, 8, 4191. [84] Wang, Y.; Chen, J.; Jiao, H.; Chen, Y.; Li, W.; Zhang, Q.; Yu, C. Chem.-Eur. J. 2013, 19, 12846. [85] Chen, J.; Jiao, H.; Li, W.; Liao, D.; Zhou, H.; Yu, C. Chem.-Asian J. 2013, 8, 276. [86] Chen, X.; Jou, M. J.; Yoon, J. Org. Lett. 2009, 11, 2181. [87] Yan, L.; Ye, Z.; Peng, C.; Zhang, S. Tetrahedron 2012, 68, 2725. [88] Li, Y.; Yin, S.; Hou, J.; Meng, L.; Gao, M.; Sun, Y.; Zhang, C.; Bai, S.; Ren, J.; Yu, C. Analyst 2019, 144, 2034. [89] Wang, K.; An, H.; Rong, Z.; Cao, Z.; Li, X. Biosens. Bioelectron. 2014, 58, 27. [90] Lin, Y.; Chapman, R.; Stevens, M. M. Anal. Chem. 2014, 86, 6410. [91] D'Autréaux, B.; Toledano, M. B. J. Nat. Rev. Mol. Cell Biol. 2007, 8, 813. [92] Weinstain, R.; Savariar, E. N.; Felsen, C N.; Tsien, R. Y. J. Am. Chem. Soc. 2014, 136, 874. [93] Sundaresan, M.; Yu, Z.; Finkel, T. Science 1995, 270, 296. [94] Ohshima, H.; Tatemichi, M.; Sawa, T. J. Arch. Biochem. Biophys. 2003, 417, 3. [95] Shah, A. M.; Channon, K. M. J. Heart 2004, 90, 486. [96] Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discovery 2004, 3, 205. [97] Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakano, K.; Irie, M.; Imato, T. Bioorg. Med. Chem. Lett. 2006, 16, 2943. [98] Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T. Org. Biomol. Chem. 2007, 5, 3762. [99] Maki, T.; Soh, N.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T. Anal. Chim. Acta 2009, 639, 78. [100] Kaloyanova, S.; Zagraanyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K, J. Am. Chem. Soc. 2016, 138, 2881. [101] Ou, Z.; Feng, Z.; Liu, G.; Chen, Y.; Gao, Y.; Li, Y.; Wang, X. Chem. Lett. 2015, 44, 425. [102] Gao, Y.-Y.; Cai, W. J.; Ou, Z. Z.; Ma, T. T.; Wang, Z. J.; Xu, M. H. Imaging Sci. Photochem. 2017, 35, 552(in Chinese). (高云燕, 蔡温姣, 欧植泽, 马拖拖, 王子继, 许墨横, 影像科学与光化学, 2017, 35, 552.) |
[1] | Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu, Jinbiao Liu. Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 41-53. |
[2] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[3] | Binghui Ding, Shaohui Han, Haiqing Xiong, Benhua Wang, Bojun Zuo, Xiangzhi Song. A Highly Selective Ratiometric Fluorescent Probe for the Detection of Hypochlorite in Acute Lung Injury [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2878-2884. |
[4] | Yifang Li, Yao Wang, Huawei Niu, Xiujin Chen, Zhaozhou Li, Yongguo Wang. Research Progress of Sulfur Dioxide Fluorescent Probe Targeting Mitochondria [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1952-1962. |
[5] | Tiantian Liu, Hongpeng Zhang, Xiaomeng Jiao, Yinjuan Bai. Research Progress of Multi-signal Fluorescent Probes for Simultaneous Detection of Biothiols [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2081-2095. |
[6] | Feiran Liu, Jing Jing, Xiaoling Zhang. Research Progress of Fluorescent Probes for Cysteine Targeting Cellular Organelles [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2053-2067. |
[7] | Zhihua Chen, Yan Hu, Lili Ma, Ziyi Zhang, Chuanxiang Liu. Rational Design of ortho-Vinylhydropyridine-Assisted Amino-fluorophore as Hypochlorite Fluorescent Probe [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 718-724. |
[8] | Hongwei Tang, Chao Wang, Keli Zhong, Shuhua Hou, Lijun Tang, Yanjiang Bian. A Naked-Eye and Fluorescent Dual-Channel Probe for Rapid Detection of Hg2+ and Its Multiple Applications [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 712-717. |
[9] | Meng Liu, Yanru Huang, Xiaofei Sun, Lijun Tang. An “Aggregation-Induced Emission+Excited-State Intramolecular Proton Transfer” Mechanisms-Based Benzothiazole Derived Fluorescent Probe and Its ClO– Recognition [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 345-351. |
[10] | Yangyang Li, Xiaofei Sun, Xiaoling Hu, Yuanyuan Ren, Keli Zhong, Xiaomei Yan, Lijun Tang. Synthesis of Triphenylamine Derivative and Its Recognition for Hg2+ with “OFF-ON” Fluorescence Response Based on Aggregation-Induced Emission (AIE) Mechanism [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 320-325. |
[11] | Jidong Zhang, Wanlin Yan, Wenqiang Hu, Dian Guo, Dalong Zhang, Xiaoxin Quan, Xianpan Bu, Siyu Chen. Design and Synthesis of a Zn2+ Fluorescent Probe Based on Aggregation Induced Luminescence Properties [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 326-331. |
[12] | Yanhui Ma, Yuqian Wu, Xiaoxu Wang, Gui Gao, Xin Zhou. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone (DDAO) [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 94-111. |
[13] | Yaxin Yang, Lin Chen, Xiaoling Hu, Keli Zhong, Shidi Li, Xiaomei Yan, Jinglin Zhang, Lijun Tang. Synthesis of a Turn-On Fluorescent Probe for Hydrogen Sulfide and Its Application in Red Wine and Living Cells [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 308-312. |
[14] | Yanqin Lai, Xue Chen, Fang Chen, Linchen Ni, Ting Wang, Ziping Zhu, Ju Man, Chunxiao Jiang, Zhenda Xie. A Lysosome-Targeted Far-Red to Near-Infrared Fluorescent Probe for Monitoring Viscosity Change During the Ferroptosis Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2850-2856. |
[15] | Chuntian Shi, Mei Yu, Aibin Wu, Jiangxiong Luo, Xiaojun Li, Ningchen Wang, Wenming Shu, Weichu Yu. A Water-Soluble Naphthalimide-Based Fluorescent Probe for Specific Sensing of Fe3+ and $\text{C}{{\text{r}}_{2}}\text{O}_{7}^{2-}$ [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2806-2813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||