Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (1): 229-240.DOI: 10.6023/cjoc202006003 Previous Articles Next Articles
REVIEWS
马素芳a,c, 余强b, 陆利a, 李丽红a, 刘文a,c, 武志芳b,c,*(), 李思进b,c,*()
收稿日期:
2020-06-02
修回日期:
2020-07-10
发布日期:
2020-08-01
通讯作者:
武志芳, 李思进
作者简介:
基金资助:
Sufang Maa,c, Qiang Yub, Li Lua, Lihong Lia, Wen Liua,c, Zhifang Wub,c,*(), Sijin Lib,c,*()
Received:
2020-06-02
Revised:
2020-07-10
Published:
2020-08-01
Contact:
Zhifang Wu, Sijin Li
Supported by:
Share
Sufang Ma, Qiang Yu, Li Lu, Lihong Li, Wen Liu, Zhifang Wu, Sijin Li. Recent Progress in Fluorescent Probes for the Detection of Ferrous Ion[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 229-240.
探针 | λ ex/nm | λ em/nm | 响应方式 | 应用 | Ref. |
---|---|---|---|---|---|
1 | 555 | 575 | off-on (30倍) | HepG2, MCF-7细胞, 小鼠肾癌变模型组织 | [ |
2 | 555 | 575 | off-on (60倍) | HepG2细胞 | [ |
3 | 405 | 495 | off-on (10倍) | HepG2细胞 | [ |
4 | 510 | 535 | off-on (30倍) | HepG2细胞 | [ |
5 | 645 | 660 | off-on (60倍) | HepG2细胞 | [ |
6 | 540 | 575 | off-on (20倍) | HepG2细胞, 海马神经元 | [ |
7 | 510 | 535 | off-on (100倍) | HepG2细胞 | [ |
8 | — | — | off-on | HepG2, HEK293细胞 | [ |
9 | 550 | 690 | off-on (7倍) | MCF-7细胞 | [ |
10 | 580 | 630 | off-on (50倍) | HeLa细胞, 鼠模型 | [ |
11 | 505 | 700 | off-on (120倍) | MCF-7, HeLa, HEK-293T和L02细胞, 鼠模型 | [ |
12 | 395 | 540 | off-on (130倍) | — | [ |
13 | 350 | 489 | off-on (5倍) | Kyse180细胞 | [ |
14 | 580 | off-on (2.5倍) | Ws1细胞 | [ | |
15 | 450 | 540 | off-on (5倍) | HeLa细胞, 斑马鱼 | [ |
16 | 404/496 | 508 | off-on (6倍) | HepG2, C3A细胞 | [ |
17 | 560 | 690 | off-on (4倍) | HL-7702, 鼠模型 | [ |
18 | — | — | off-on无氧1.7倍, 有氧30倍 | PC3-luc, MDA-MB-231-luc, HEK-293和LNCaP-luc细胞 | [ |
19 | 557 | 560 | off-on (3倍) | 水 | [ |
20 | 435 | 544 | off-on (27倍) | 星形胶质细胞, 小鼠缺血性脑组织 | [ |
21 | 369 | 452 | off-on (24倍) | HepG2细胞 | [ |
22 | 510 | 571 | off-on (60倍) | RAW264.7细胞 | [ |
23 | 445 | 550 | off-on (16倍) | HL-7702细胞 | [ |
24 | 225/300 | 370 | off-on (1.7倍) | 番茄汁, 黑巧克力, 市售药物, 自来水 | [ |
25 | 352 | 450 | off-on (15倍) | — | [ |
26 | — | — | on-off | MCF-7细胞 | [ |
27 | — | — | on-off | HepG2、HL-7702和RAW 264.7 | [ |
28 | — | — | on-off | 阿尔兹海默症雌性肉瘤小鼠模型 | [ |
29 | — | — | 免疫荧光法 | U2OS和PC-3细胞 | [ |
30 | 494/545 | 515/556 | 比率法 | HEK-293, MCF-10A, MDA-MB-231和U2OS细胞 | [ |
31 | 485/569 | 507/635 | 比率法 | HL-7702细胞 | [ |
32 | — | — | 比率法 | 乳酸亚铁口服液 | [ |
33 | 552 | 622/820 | 比率法 | HepG2细胞、缺血性损伤神经元 | [ |
探针 | λ ex/nm | λ em/nm | 响应方式 | 应用 | Ref. |
---|---|---|---|---|---|
1 | 555 | 575 | off-on (30倍) | HepG2, MCF-7细胞, 小鼠肾癌变模型组织 | [ |
2 | 555 | 575 | off-on (60倍) | HepG2细胞 | [ |
3 | 405 | 495 | off-on (10倍) | HepG2细胞 | [ |
4 | 510 | 535 | off-on (30倍) | HepG2细胞 | [ |
5 | 645 | 660 | off-on (60倍) | HepG2细胞 | [ |
6 | 540 | 575 | off-on (20倍) | HepG2细胞, 海马神经元 | [ |
7 | 510 | 535 | off-on (100倍) | HepG2细胞 | [ |
8 | — | — | off-on | HepG2, HEK293细胞 | [ |
9 | 550 | 690 | off-on (7倍) | MCF-7细胞 | [ |
10 | 580 | 630 | off-on (50倍) | HeLa细胞, 鼠模型 | [ |
11 | 505 | 700 | off-on (120倍) | MCF-7, HeLa, HEK-293T和L02细胞, 鼠模型 | [ |
12 | 395 | 540 | off-on (130倍) | — | [ |
13 | 350 | 489 | off-on (5倍) | Kyse180细胞 | [ |
14 | 580 | off-on (2.5倍) | Ws1细胞 | [ | |
15 | 450 | 540 | off-on (5倍) | HeLa细胞, 斑马鱼 | [ |
16 | 404/496 | 508 | off-on (6倍) | HepG2, C3A细胞 | [ |
17 | 560 | 690 | off-on (4倍) | HL-7702, 鼠模型 | [ |
18 | — | — | off-on无氧1.7倍, 有氧30倍 | PC3-luc, MDA-MB-231-luc, HEK-293和LNCaP-luc细胞 | [ |
19 | 557 | 560 | off-on (3倍) | 水 | [ |
20 | 435 | 544 | off-on (27倍) | 星形胶质细胞, 小鼠缺血性脑组织 | [ |
21 | 369 | 452 | off-on (24倍) | HepG2细胞 | [ |
22 | 510 | 571 | off-on (60倍) | RAW264.7细胞 | [ |
23 | 445 | 550 | off-on (16倍) | HL-7702细胞 | [ |
24 | 225/300 | 370 | off-on (1.7倍) | 番茄汁, 黑巧克力, 市售药物, 自来水 | [ |
25 | 352 | 450 | off-on (15倍) | — | [ |
26 | — | — | on-off | MCF-7细胞 | [ |
27 | — | — | on-off | HepG2、HL-7702和RAW 264.7 | [ |
28 | — | — | on-off | 阿尔兹海默症雌性肉瘤小鼠模型 | [ |
29 | — | — | 免疫荧光法 | U2OS和PC-3细胞 | [ |
30 | 494/545 | 515/556 | 比率法 | HEK-293, MCF-10A, MDA-MB-231和U2OS细胞 | [ |
31 | 485/569 | 507/635 | 比率法 | HL-7702细胞 | [ |
32 | — | — | 比率法 | 乳酸亚铁口服液 | [ |
33 | 552 | 622/820 | 比率法 | HepG2细胞、缺血性损伤神经元 | [ |
[1] |
Theil E.C.; Goss D.J. Chem. Rev. 2009, 109, 4568.
|
[2] |
Hentze M.W.; Muckenthaler M.U.; Galy B.; Camaschella C. Cell 2010, 142, 24.
|
[3] |
Meynard D.; Babitt J.L.; Lin H.Y. Blood 2014, 123, 168.
|
[4] |
Ganz T. Physiol. Rev. 2013, 93, 1721.
|
[5] |
Wang J.; Pantopoulos K. Biochem. J. 2011, 434, 365.
|
[6] |
Kaplan C.D.; Kaplan J. Chem. Rev. 2009, 109, 4536.
|
[7] |
Zeng G.; Li H.; Wei Y.; Xuan W.; Zhang R.; Breden L.E.; Wang W.; Liang F.S. ACS Synth. Biol. 2017, 6, 921.
|
[8] |
Enami S.; Sakamoto Y.; Colussi A.J. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 623.
|
[9] |
Wang J.; Pantopoulos K. Biochem. J. 2011, 434, 365.
|
[10] |
Kakhlon O.; Cabantchik Z.I. Free Radical Biol. Med. 2002, 33, 1037.
|
[11] |
Liu T.; Liu W.; Zhang M.; Yu W.; Gao F.; Li C.; Wang S.B.; Feng J.; Zhang X.Z. ACS Nano 2018, 12, 12181.
|
[12] |
Hezode C.; Dhumeaux D. Gastroenterol. Clin. Biol. 2000, 24, B82.
|
[13] |
von Haehling, S.; Jankowska, E.A.; van Veldhuisen, D.J.; Ponikowski, P.; Anker, S.D. Nat. Rev. Cardiol. 2015, 12, 659.
|
[14] |
Oshiro S.; Morioka M.S.; Kikuchi M. Adv. Pharmacol. Sci. 2011, 1, 378278.
|
[15] |
Dixon S.J.; Lemberg K. M.; Lamprecht M.R.; Skouta R.; Zaitsev E.M.; Gleason C.E.; Patel D.N.; Bauer A.J.; Cantley A.M.; Yang W.S.; Morrison B.; Stockwell B.R. Cell 2012, 149, 1060.
|
[16] |
Richardson D.R.; Lane D.J.R.; Becker E.M.; Huang M.L.-H.; Whitnall M.; Rahmanto Y.S.; Sheftel A.D.; Ponka P. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 10775.
|
[17] |
Zhang S.X.; Niu Q.M.; Wu S.Z.; Lv H.J.; Xing G.W. Chin. J. Org. Chem. 2019, 39, 940. (in Chinese)
|
( 张晟曦, 牛晴雯, 吴松泽, 吕海娟, 邢国文, 有机化学, 2019, 39, 940.).
|
|
[18] |
Wang S.Q.; Shen S.L.; Zhang Y.R.; Dai X.; Zhao B.X. Chin. J. Org. Chem. 2014, 34, 1717. (in Chinese)
|
( 王胜清, 申世立, 张延如, 戴溪, 赵宝祥, 有机化学, 2014, 34, 1717.).
|
|
[19] |
Lv T.Y.Z.; Zhu K.N.; Liu B. Chin. J. Org. Chem. 2019, 39, 2786. (in Chinese)
|
(吕陶玉赜, 朱康宁, 刘斌, 有机化学, 2019, 39, 2786.).
|
|
[20] |
Jiao C.P.; Liu Y.Y.; Lu W.J.; Zhang P.P.; Wang Y.F. Chin. J. Org. Chem. 2019, 39, 591. (in Chinese)
|
( 矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.).
|
|
[21] |
Cheng Y.W.; Shabir G.; Li X.; Fang L.P.; Xu L.Y.; Zhang H. F.; Li E.M. Chem. Commun. 2020, 56, 1070.
|
[22] |
Ma S.F.; Fang D.C.; Ning B.M.; Li M.F.; He L.; Gong B. Chem. Commun. 2014, 50, 6475.
|
[23] |
Ding Y.B.; Tang Y.Y.; Zhu W.H.; Xie Y.S. Chem. Soc. Rev. 2015, 44, 1101.
|
[24] |
Ding Y.B.; Zhu W.H.; Xie Y.S. Chem. Rev. 2017, 117, 2203.
|
[25] |
Xie Y.S.; Wei P.C.; Li X.; Hong T.; Zhang K.; Furuta H. J. Am. Chem. Soc. 2013, 135, 19119.
|
[26] |
Tang Y.Y.; Ding Y.B.; Li X.; Ågren H.; Li T.; Zhang W.B.; Xie Y.S. Sens. Actuators B, 2015, 206, 291.
|
[27] |
Wei S.; Tan L.; Yin X.; Wang R.; Shan X.; Chen Q.; Li T.; Zhang X.; Jiang C.; Sun G. Analyst 2020, 145, 2357.
|
[28] |
Mo Q.; Jia M.; Zhuang P.; Yang S.; Su W.; Zhu Y.; Shao N.; Zhao M. Anal. Methods 2019, 11, 936.
|
[29] |
Yang S.; Jiang Z.Y.; Chen Z.Z.; Tong L.L.; Lu J.; Wang J.H. Microchim. Acta 2015, 182, 1911.
|
[30] |
Aron A.T.; Reeves A.G.; Chang C.J. Curr. Opin. Chem. Biol. 2018, 43, 113.
|
[31] |
Hirayama T. Acta Histochem. Cytochem. 2018, 51, 137.
|
[32] |
Hirayama T. Free Radical Biol. Med. 2019, 133, 38.
|
[33] |
Hirayama T.; Okuda K.; Nagasawa H. Chem. Sci. 2013, 4, 1250.
|
[34] |
Mukaide T.; Hattori Y.; Misawa N.; Funahashi S.; Jiang L.; Hirayama T.; Nagasawa H.; Toyokuni S. Free Radical Res. 2014, 48, 990.
|
[35] |
Niwa M.; Hirayama T.; Okuda K.; Nagasawa H. Org. Biomol. Chem. 2014, 12, 6590.
|
[36] |
Hirayama T.; Tsuboi H.; Niwa M.; Miki A.; Kadota S.; Ikeshita Y.; Okuda K.; Nagasawa H. Chem. Sci. 2017, 8, 4858.
|
[37] |
Niwa M.; Hirayama T.; Oomoto I.; Wang D.O.; Nagasawa H. ACS Chem. Biol. 2018, 13, 1853.
|
[38] |
Hirayama T.; Kadota S.; Niwa M.; Nagasawa H. Metallomics 2018, 10, 794.
|
[39] |
Yang X.P.; Wang Y.S.; Liu R.; Zhang Y.R.; Tang J.; Yang E.B.; Zhang D.; Zhao Y.F.; Ye Y. Sens. Actuators B, 2019, 288, 217.
|
[40] |
Dong B.; Song W.; Lu Y.; Tian M.; Kong X.; Mehmood A.H., Lin W. Sens. Actuators B, 2019, 305, 127470.
|
[41] |
Zheng J.; Feng S.; Gong S.; Xia Q.; Feng G. Sens. Actuators B, 2020, 309, 127796.
|
[42] |
Lee Y.H.; Verwilst P.; Kim H.S.; Ju J.; Kim J. S.; Kim K. Chem. Commun. 2019, 55, 12136.
|
[43] |
Gao G.Q.; Wang X.; Wang Z.M.; Jin X.C.; Ou L.; Zhou J.J.; Xie P.H. Talanta 2020, 215, 120908.
|
[44] |
Maiti S.; Aydin Z.; Zhang Y.; Guo M.L. Dalton Trans. 2015, 44, 8942.
|
[45] |
Zhang X.; Chen Y.N.; Cai X.Y.; Liu C.Y.; Jia P.; Li Z.L.; Zhu H.C.; Yu Y.M.; Wang K.; Li X.W.; Sheng W.L.; Zhu B.C. Dyes Pigm. 2020, 174, 108065.
|
[46] |
Au-Yeung H.Y.; Chan J.; Chantarojsiri T.; Chang C.J. J. Am. Chem. Soc. 2013, 135, 15165.
|
[47] |
Wu L.J.; Ding Q.; Wang X.; Li P.; Fan N.N.; Zhou Y.Q.; Tong L.L.; Zhang W.; Zhang W.; Tang B. Anal. Chem. 2020, 92, 1245.
|
[48] |
Aron A.T.; Heffern M.C.; Lonergan Z.R.; Vander Wal M.N.; Blank B.R.; Spangler B.; Zhang Y.F.; Park H.M.; Stahl A.; Renslo A.R.; Skaar E.P.; Chang C.J. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12669.
|
[49] |
He X.; Zhang G.B.; Chi Z.X.; Dai P.F.; Huang J.Y.; Yang J.X. Chem. Pap. 2017, 71, 2209.
|
[50] |
Xuan W.M.; Pan R.; Wei Y.Y.; Cao Y.T.; Li H.Q.; Liang F.S.; Liu K.J.; Wang W. Bioconjugate Chem. 2016, 27, 302.
|
[51] |
Long L.L.; Wang N.; Han Y.Y.; Huang M.Y.; Yuan X.Q.; Cao S.Y.; Gong A. H.; Wang K. Analyst 2018, 143, 2555.
|
[52] |
Hou G.G.; Wang C.H.; Sun J.F.; Yang M.Z.; Lin D.; Li H.J. Biochem. Biophys. Res. Commun. 2013, 439, 459.
|
[53] |
Qu Z.J.; Li P.; Zhang X. X.; Han K.L. J. Mater. Chem. B. 2016, 4, 887.
|
[54] |
Santhoshkumar S.; Velmurugan K.; Prabhu J.; Radhakrishnan G.; Nandhakumar R. Inorg. Chim. Acta. 2016, 439, 1.
|
[55] |
Praveen L.; Reddy M.L.P.; Varma R.L. Tetrahedron Lett. 2010, 51, 6626.
|
[56] |
Li P.; Xiao H.B.; Tang B. Chin. J. Chem. 2012, 30, 1992.
|
[57] |
Spangler B.; Morgan C.W.; Fontaine S.D.; Vander Wal M.N.; Chang C.J.; Wells J.A.; Renslo A.R. Nat. Chem. Biol. 2016, 12, 680.
|
[58] |
Aron A.T.; Loehr M.O.; Bogena J.; Chang C.J. J. Am. Chem. Soc. 2016, 138, 14338.
|
[59] |
Li P.; Fang L.B.; Zhou H.; Zhang W.; Wang X.; Li N.; Zhong H.B.; Tang B. Chem. -Eur. J. 2011, 17, 10520.
|
[60] |
Liu Z.C.; Wang S.N.; Li W.Y.; Tian Y. Anal. Chem. 2018, 90, 2816.
|
[1] | Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu, Jinbiao Liu. Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 41-53. |
[2] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[3] | Binghui Ding, Shaohui Han, Haiqing Xiong, Benhua Wang, Bojun Zuo, Xiangzhi Song. A Highly Selective Ratiometric Fluorescent Probe for the Detection of Hypochlorite in Acute Lung Injury [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2878-2884. |
[4] | Yifang Li, Yao Wang, Huawei Niu, Xiujin Chen, Zhaozhou Li, Yongguo Wang. Research Progress of Sulfur Dioxide Fluorescent Probe Targeting Mitochondria [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1952-1962. |
[5] | Tiantian Liu, Hongpeng Zhang, Xiaomeng Jiao, Yinjuan Bai. Research Progress of Multi-signal Fluorescent Probes for Simultaneous Detection of Biothiols [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2081-2095. |
[6] | Feiran Liu, Jing Jing, Xiaoling Zhang. Research Progress of Fluorescent Probes for Cysteine Targeting Cellular Organelles [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2053-2067. |
[7] | Zhihua Chen, Yan Hu, Lili Ma, Ziyi Zhang, Chuanxiang Liu. Rational Design of ortho-Vinylhydropyridine-Assisted Amino-fluorophore as Hypochlorite Fluorescent Probe [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 718-724. |
[8] | Hongwei Tang, Chao Wang, Keli Zhong, Shuhua Hou, Lijun Tang, Yanjiang Bian. A Naked-Eye and Fluorescent Dual-Channel Probe for Rapid Detection of Hg2+ and Its Multiple Applications [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 712-717. |
[9] | Meng Liu, Yanru Huang, Xiaofei Sun, Lijun Tang. An “Aggregation-Induced Emission+Excited-State Intramolecular Proton Transfer” Mechanisms-Based Benzothiazole Derived Fluorescent Probe and Its ClO– Recognition [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 345-351. |
[10] | Yangyang Li, Xiaofei Sun, Xiaoling Hu, Yuanyuan Ren, Keli Zhong, Xiaomei Yan, Lijun Tang. Synthesis of Triphenylamine Derivative and Its Recognition for Hg2+ with “OFF-ON” Fluorescence Response Based on Aggregation-Induced Emission (AIE) Mechanism [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 320-325. |
[11] | Jidong Zhang, Wanlin Yan, Wenqiang Hu, Dian Guo, Dalong Zhang, Xiaoxin Quan, Xianpan Bu, Siyu Chen. Design and Synthesis of a Zn2+ Fluorescent Probe Based on Aggregation Induced Luminescence Properties [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 326-331. |
[12] | Yanhui Ma, Yuqian Wu, Xiaoxu Wang, Gui Gao, Xin Zhou. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone (DDAO) [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 94-111. |
[13] | Yaxin Yang, Lin Chen, Xiaoling Hu, Keli Zhong, Shidi Li, Xiaomei Yan, Jinglin Zhang, Lijun Tang. Synthesis of a Turn-On Fluorescent Probe for Hydrogen Sulfide and Its Application in Red Wine and Living Cells [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 308-312. |
[14] | Yanqin Lai, Xue Chen, Fang Chen, Linchen Ni, Ting Wang, Ziping Zhu, Ju Man, Chunxiao Jiang, Zhenda Xie. A Lysosome-Targeted Far-Red to Near-Infrared Fluorescent Probe for Monitoring Viscosity Change During the Ferroptosis Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2850-2856. |
[15] | Chuntian Shi, Mei Yu, Aibin Wu, Jiangxiong Luo, Xiaojun Li, Ningchen Wang, Wenming Shu, Weichu Yu. A Water-Soluble Naphthalimide-Based Fluorescent Probe for Specific Sensing of Fe3+ and $\text{C}{{\text{r}}_{2}}\text{O}_{7}^{2-}$ [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2806-2813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||