Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (8): 2275-2299.DOI: 10.6023/cjoc202202018 Previous Articles Next Articles
REVIEW
收稿日期:
2022-02-15
修回日期:
2022-05-05
发布日期:
2022-05-31
通讯作者:
薛东
基金资助:
Received:
2022-02-15
Revised:
2022-05-05
Published:
2022-05-31
Contact:
Dong Xue
Supported by:
Share
Geyang Song, Dong Xue. Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2275-2299.
[1] |
(a) Hartwig, J. F. Nature 2008, 455, 314.
doi: 10.1038/nature07369 |
(b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
doi: 10.1002/anie.200804497 |
|
(c) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599.
doi: 10.1002/adsc.200404216 |
|
(d) Castillo, P. R.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
doi: 10.1021/acs.chemrev.6b00512 |
|
[2] |
Crabtree, R. H. The Organometallic Chemistry of the Transitionmetals, John Wiley & Sons, 2009.
|
[3] |
(a) Kalthoff, F. S.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F. Chem. Soc. Rev. 2018, 47, 7190.
doi: 10.1039/C8CS00054A |
(b) Zhou, Q.; Zou, Y.; Lu, L.; Xiao, W. Angew. Chem., Int. Ed., 2019, 58, 1586.
doi: 10.1002/anie.201803102 |
|
[4] |
Kalthoff, F. S.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F. Chem. Soc. Rev. 2018, 47, 7190.
doi: 10.1039/C8CS00054A |
[5] |
Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 |
[6] |
Arias-Rotondoa, D. M.; McCusker, J. K. Chem. Soc. Rev. 2016, 45, 5803.
pmid: 27711624 |
[7] |
(a) Chen, J; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
doi: 10.1039/C5CY01289A |
(b) Lang, X., Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.
doi: 10.1039/C3CS60188A |
|
(c) Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Green Chem. 2016, 18, 5391.
doi: 10.1039/C6GC01582D |
|
(d) Savateev, A.; Ghosh, I.; König, B.; Antonietti, M. Angew. Chem., Int. Ed. 2018, 57, 15936.
doi: 10.1002/anie.201802472 |
|
[8] |
Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 |
[9] |
(a) Hopkinson, M. N.; Sahoo, B.; Li, J.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
doi: 10.1002/chem.201304823 pmid: 24596102 |
(b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
doi: 10.1021/acs.chemrev.6b00018 pmid: 24596102 |
|
[10] |
(a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
doi: 10.1038/s41570-017-0052 |
(b) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152.
doi: 10.1002/anie.201809431 |
|
[11] |
(a) PrierDanica, C. K.; Rankic, A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r |
(b) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Chem. Rev. 2022, 122, 1543.
doi: 10.1021/acs.chemrev.1c00403 |
|
[12] |
Cavedon, C.; Seeberger, P. H.; Pieber, B. Eur. J. Org. Chem. 2020, 1379.
|
[13] |
(a) Pitsinos, E. N.; Vidali, V. P.; Couladouros, E. A. Eur. J. Org. Chem. 2011, 2011, 1207.
doi: 10.1002/ejoc.201001520 pmid: 26571338 |
(b) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew. Chem., Int. Ed. 1999, 38, 2096.
doi: 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F pmid: 26571338 |
|
(c) Bariwal, J.; Van der Eycken, E. Chem. Soc. Rev. 2013, 42, 9283.
doi: 10.1039/c3cs60228a pmid: 26571338 |
|
(d) Brown, D. G.; Boström, J. J. Med. Chem. 2016, 59, 4443.
doi: 10.1021/acs.jmedchem.5b01409 pmid: 26571338 |
|
[14] |
(a) Bariwal, J.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283.
doi: 10.1039/c3cs60228a pmid: 27689804 |
(b) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
pmid: 27689804 |
|
(c) Forero-Cortés, P. A.; Haydl, A. M. Org. Process Res. Dev. 2019, 23, 1478.
doi: 10.1021/acs.oprd.9b00161 pmid: 27689804 |
|
(d) Dorel, R.; C. Grugel, P.; Haydl, A. M. Angew. Chem., Int. Ed. 2019, 58, 17118.
doi: 10.1002/anie.201904795 pmid: 27689804 |
|
[15] |
(a) Ullmann, F. Chem. Ber. 1903, 36, 2382.
doi: 10.1002/cber.190303602174 pmid: 24585151 |
(b) Goldberg, I. Chem. Ber. 1906. 39, 1691.
doi: 10.1002/cber.19060390298 pmid: 24585151 |
|
(c) Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 12, 927.
doi: 10.1246/cl.1983.927 pmid: 24585151 |
|
for reviews, see: (d) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
doi: 10.1021/cr000664r pmid: 24585151 |
|
(e) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
doi: 10.1039/c3cs60289c pmid: 24585151 |
|
[16] |
(a) Qiao, J.; Lam, P. Y. S. Synthesis 2011, 829.
|
(b) West, M. J.; Fyfe, J. W. B.; Vantourout, J. C.; Watson, A. J. B. Chem. Rev. 2019, 119, 12491.
doi: 10.1021/acs.chemrev.9b00491 |
|
[17] |
(a) Levin, M. D.; Kim, S.; Toste, F. D. ACS Cent. Sci. 2016, 2, 293.
doi: 10.1021/acscentsci.6b00090 |
(b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
doi: 10.1038/s41570-017-0052 |
|
(c) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
doi: 10.1021/acs.chemrev.1c00383 |
|
[18] |
(a) Tasker, S. Z.; Jamison, T. F. J. Am. Chem. Soc. 2015, 137, 9531.
doi: 10.1021/jacs.5b05597 pmid: 31714761 |
(b) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald, S. L; MacMillan, D. W. C. Science 2016, 353, 279.
doi: 10.1126/science.aag0209 pmid: 31714761 |
|
(c) Oderinde, M. S.; Jones, N. H.; Juneau, A.; Frenette, M.; Aquila, B.; Tentarelli, S.; Robbins, D. W.; Johannes, J. W. Angew. Chem., Int. Ed. 2016, 55, 13219.
doi: 10.1002/anie.201604429 pmid: 31714761 |
|
(d) Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2018, 57, 3488.
doi: 10.1002/anie.201800699 pmid: 31714761 |
|
(e) Du, Y.; Pearson, R. M.; Lim, C. H.; Sartor, S. M.; Ryan, M. D.; Yang, H. S.; Damrauer, N. H.; Miyake, G. M. Chem.-Eur. J. 2017, 23, 10962.
doi: 10.1002/chem.201702926 pmid: 31714761 |
|
(f) Huang, Z.; Xie, K.; Meng, G.; Ma, J.; Xue, D.; Yang, J. CN 108409618, 2018.
pmid: 31714761 |
|
(g) For the nickel catalyzed C—N coupling with near UV light. Lim, C. H.; Kudisch, M.; Liu, B.; Miyake, G. M. J. Am. Chem. Soc. 2018, 140, 7667.
doi: 10.1021/jacs.8b03744 pmid: 31714761 |
|
(h) Li, C.; Kawamata, Y.; Nakamura, H.; Vantourout, J. C.; Liu, Z.; Hou, Q.; Bao, D.; Starr, J. T.; Chen, J.; Yan, M.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 13088.
doi: 10.1002/anie.201707906 pmid: 31714761 |
|
(i) Kawamata, Y.; Vantourout, J. C.; Hickey, D. P.; Bai, P.; Chen, L.; Hou, Q. L.; Qiao, W.; Barman, K.; Edwards, M. A.; Castro, A. F. G.; Gruyter, J. N.; Nakamura, H.; Knouse, K.; Qin, C.; Clay, K. J.; Bao, D.; Li, C.; Starr, J. T.; Irizarry, C. G.; Sach, N.; White, H. S.; Neurock, M.; Minteer, S. D.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 6392.
doi: 10.1021/jacs.9b01886 pmid: 31714761 |
|
(j) Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S. D.; Browne, L.; Noel, T. J. Am. Chem. Soc. 2019, 141, 5664.
doi: 10.1021/jacs.9b02266 pmid: 31714761 |
|
(k) Kudisch, Lim, M.; C.; Thordarson, P.; Miyake, G. M. J. Am. Chem. Soc. 2019, 141, 19479.
doi: 10.1021/jacs.9b11049 pmid: 31714761 |
|
[19] |
Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.
doi: 10.1126/science.1226458 |
[20] |
Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 5129.
doi: 10.1002/anie.201301202 |
[21] |
Ziegler, D. T.; Choi, J.; Muñoz, M. J. M.; Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 13107.
doi: 10.1021/ja4060806 pmid: 23968565 |
[22] |
Do, H.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 2162.
doi: 10.1021/ja4126609 |
[23] |
Yoo, W.; Tsukamoto, T.; Kobayashi, S. Org. Lett. 2015, 17, 3640.
doi: 10.1021/acs.orglett.5b01645 |
[24] |
Tasker, S. Z.; Jamison, T. F. J. Am. Chem. Soc. 2015, 137, 9531.
doi: 10.1021/jacs.5b05597 pmid: 26196355 |
[25] |
Yoo, W.; Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.
doi: 10.1002/anie.201500074 |
[26] |
Oderinde, M. S.; Jones, N. H.; Juneau, A.; Frenette, M.; Aquila, B.; Tentarelli, S.; Robbins, D. W.; Johannes, J. W. Angew. Chem., Int. Ed. 2016, 55, 13219.
doi: 10.1002/anie.201604429 |
[27] |
Konev, M. O.; McTeague, T. A.; Johannes, J. W. ACS Catal. 2018, 8, 9120.
doi: 10.1021/acscatal.8b02954 |
[28] |
Li, G.; Yang, L.; Liu, J. Zhang, W.; Cao, R.; Wang, C.; Zhang, Z.; Xiao, J.; Xue, D. Angew. Chem., Int. Ed. 2021, 60, 5230.
doi: 10.1002/anie.202012877 |
[29] |
Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, W.; Buchwald, S. L.; MacMillan, D. W. C. Science 2016, 353, 279.
doi: 10.1126/science.aag0209 pmid: 27338703 |
[30] |
Till, N. A.; Tian, L.; Dong, Z.; Scholes, G. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2020, 142, 15830.
doi: 10.1021/jacs.0c05901 |
[31] |
Du, Y.; Pearson, R. M.; Lim, C. H.; Sartor, S. M.; Ryan, M. D.; Yang, H.; Damrauer, N. H.; Miyake, G. M. Chem.-Eur. J. 2017, 23, 10962.
doi: 10.1002/chem.201702926 pmid: 28654171 |
[32] |
Lim, C. H.; Kudisch, M.; Liu, B.; Miyake, G. M. J. Am. Chem. Soc. 2018, 140, 7667.
doi: 10.1021/jacs.8b03744 |
[33] |
Kudisch, M.; Lim, C. H.; Thordarson, P.; Miyake, G. M. J. Am. Chem. Soc. 2019, 141, 19479.
doi: 10.1021/jacs.9b11049 pmid: 31714761 |
[34] |
Liu, Y.; Liang, D.; Lu, L.; Xiao, W. Chem. Commun. 2019, 55, 4853.
doi: 10.1039/C9CC00987F |
[35] |
Ghosh, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Science 2019, 365, 36.
|
[36] |
Engl, P. S.; Häring, A. P.; Berger, F.; Berger, G.; Bitrián, A. P.; Ritter, T. J. Am. Chem. Soc. 2019, 141, 13346.
doi: 10.1021/jacs.9b07323 |
[37] |
Gisbertz, S.; Reischauer, S.; Pieber, B. Nat. Catal. 2020, 3, 611.
doi: 10.1038/s41929-020-0473-6 |
[38] |
Song, G.; Yang, L.; Li, J.; Tang, W.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem., Int. Ed. 2021, 60, 21536.
doi: 10.1002/anie.202108587 |
[39] |
Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2018, 57, 3488.
doi: 10.1002/anie.201800699 |
[40] |
Blackburn, J. M.; Kanegusuku, A. L. G.; Scott, G. E.; Roizen, J. L. Org. Lett. 2019, 21, 7049.
doi: 10.1021/acs.orglett.9b02621 pmid: 31436104 |
[41] |
Wu, C.; Bian, Q.; Ding, T.; Tang, M.; Zhang, W.; Xu, Y.; Liu, B.; Xu, H.; Li, H.-B.; Fu, H. ACS Catal. 2021, 11, 9561.
doi: 10.1021/acscatal.1c02272 |
[42] |
Feng, M.; Tang, B.; Liang, S.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
doi: 10.2174/1568026615666150915111741 |
[43] |
(a) Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147.
doi: 10.1021/cr950066q |
(b) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
doi: 10.1021/jm401375q |
|
[44] |
Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
doi: 10.1002/anie.201604615 |
[45] |
Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471.
|
[46] |
(a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
doi: 10.1021/ar800098p pmid: 21391564 |
(b) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
doi: 10.1021/cr100347k pmid: 21391564 |
|
(c) Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu, J.; Jiao, N. Angew. Chem., Int. Ed. 2017, 56, 2487.
doi: 10.1002/anie.201612190 pmid: 21391564 |
|
[47] |
(a) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517.
pmid: 19453106 |
(b) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397.
doi: 10.1016/j.tet.2004.05.044 pmid: 19453106 |
|
(c) Fernández, R. M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180.
doi: 10.1021/ja0580340 pmid: 19453106 |
|
(d) Alvaro, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858.
doi: 10.1021/ja901793w pmid: 19453106 |
|
(e) Sayah, M.; Organ, M. G. Chem.-Eur. J. 2011, 17, 11719.
doi: 10.1002/chem.201102158 pmid: 19453106 |
|
(f) Gogoi, P.; Hazarika, S.; Sarma, M. J.; Sarma, K.; Barman, P. Tetrahedron 2014, 70, 7484.
doi: 10.1016/j.tet.2014.08.020 pmid: 19453106 |
|
[48] |
(a) Liu, B.; Lim, C.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616.
doi: 10.1021/jacs.7b07390 pmid: 29431836 |
(b) Liu, B.; Lim, C.; Miyake, G. M. Synlett 2018; 29, 2449.
doi: 10.1055/s-0037-1610230 pmid: 29431836 |
|
(c) Li, G.; Yan, Q.; Gan, Z.; Li, Q.; Dou, X.; Yang, D. Org. Lett. 2019, 21, 7938.
doi: 10.1021/acs.orglett.9b02921 pmid: 29431836 |
|
(d) Guo, W.; Tao, K.; Tan, W.; Zhao, M.; Zheng, L.; Fan, X. Org. Chem. Front. 2019, 6, 2048.
doi: 10.1039/C8QO01353E pmid: 29431836 |
|
(e) Chalotra, N.; Rizvi, M. A. B.; Shah, A. Org. Lett. 2019, 21, 4793.
doi: 10.1021/acs.orglett.9b01677 pmid: 29431836 |
|
(f) Jiang, M., Li, H.; Yang, H.; Fu, H. Angew. Chem., Int. Ed. 2017, 56, 874.
doi: 10.1002/anie.201610414 pmid: 29431836 |
|
(g) Czyz, M. L.; Weragoda, G. K.; Monaghan, R.; Connell, T. U.; Brzozowski, M.; Scully, A. D.; Burton, J.; Lupton, D. W.; Polyzos, A. Org. Biomol. Chem. 2018, 16, 1543.
doi: 10.1039/c8ob00238j pmid: 29431836 |
|
[49] |
Wang, X.; Cuny, G. D.; Noël, T. Angew. Chem., Int. Ed. 2013, 52, 7860.
doi: 10.1002/anie.201303483 |
[50] |
Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548.
doi: 10.1021/ja404050f |
[51] |
Johnson, M. W.; Hannoun, K. I.; Tan, Y.; Fu, G.; C. Peters, J. C. Chem. Sci. 2016, 7, 4091.
doi: 10.1039/C5SC04709A pmid: 28044096 |
[52] |
Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760.
doi: 10.1021/jacs.5b11244 pmid: 26840123 |
[53] |
Jouffroy, M.; Kelly, C. B.; G. Molander, A. Org. Lett. 2016, 18, 876.
doi: 10.1021/acs.orglett.6b00208 |
[54] |
Liu, N.; Hofman, K.; Herbert, A.; Manolikakes, G. Org. Lett. 2018, 20, 760.
doi: 10.1021/acs.orglett.7b03896 |
[55] |
Yue, H.; Zhu, C.; Rueping, M. Angew. Chem., Int. Ed. 2018, 57, 1371.
doi: 10.1002/anie.201711104 |
[56] |
(a) Rappoport, Z. The Chemistry of Phenols, Wiley-VCH, Weinheim, 2003.
pmid: 16839166 |
(b) Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, New York, 1996.
pmid: 16839166 |
|
(c) Arpe, H. J. Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, pp. 359-374.
pmid: 16839166 |
|
(d) Larock, R. C. Comprehensive Organic Transformations, VCH, New York, 1989, p. 966.
pmid: 16839166 |
|
(e) Otera, J. Esterification:Methods, Reactions and Applications, Wiley, New York, 2003.
pmid: 16839166 |
|
(f) Otera, J. Chem. Rev. 1993, 93, 1449.
doi: 10.1021/cr00020a004 pmid: 16839166 |
|
(g) Ishihara, K. Tetrahedron 2009, 65, 1085.
doi: 10.1016/j.tet.2008.11.004 pmid: 16839166 |
|
(h) Chakraborti, A. K.; Shivani. J. Org. Chem. 2006, 71, 5785.
pmid: 16839166 |
|
(i) Carle, M. S.; Shimokura, G. K.; Murphy, G. K. Eur. J. Org. Chem. 2016, 3930.
pmid: 16839166 |
|
[57] |
Cohen, T.; Dietz, A. G.; Miser, J. R. J. Org. Chem. 1977, 42, 2053.
doi: 10.1021/jo00432a003 |
[58] |
(a) Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
doi: 10.1021/ol025548k |
(b) Li, F; Wang, Q; Ding, Z; Tao, G. Org. Lett. 2003, 5, 2169.
doi: 10.1021/ol0346436 |
|
(c) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799.
doi: 10.1021/ol0350947 |
|
(d) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 8725.
doi: 10.1002/anie.200903639 |
|
(e) Zhao, D.; Wu, N.; Zhang, S.; Xi, P.; Su, X.; Lan, J.; You, J. Angew. Chem., Int. Ed. 2009, 48, 8729.
doi: 10.1002/anie.200903923 |
|
(f) Yang, D.; Fu, H. Chem. Eur. J. 2010, 16, 2366.
doi: 10.1002/chem.200903468 |
|
(g) Ding, G.; Han, H. Jiang, T.; Wu, T.; Han, B. Chem. Commun. 2014, 50, 9072.
doi: 10.1039/C4CC02267J |
|
(h) Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J. Am. Chem. Soc. 2016, 138, 13493.
doi: 10.1021/jacs.6b08114 |
|
(i) Fier, P. S.; Maloney, K. M. Org. Lett. 2017, 19, 3033.
doi: 10.1021/acs.orglett.7b01403 |
|
(j) Chen, Z.; Jiang, Y.; Zhang, L.; Guo, Y.; Ma, D. J. Am. Chem. Soc. 2019, 141, 3541.
doi: 10.1021/jacs.8b12142 |
|
[59] |
(a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
pmid: 11277787 |
(b) Chan, D. M. T.; Monaco, K. L.; Wang, R.; Winteres, M. P. Tetrahedron Lett. 1998, 39, 2933.
doi: 10.1016/S0040-4039(98)00503-6 pmid: 11277787 |
|
(c) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
doi: 10.1016/S0040-4039(98)00502-4 pmid: 11277787 |
|
(d) Decicco, C. P.; Song, S.; Evans, D. A. Org. Lett. 2001, 3, 1029.
pmid: 11277787 |
|
(e) Chan, D. M. T.; Monaco, K. L.; Li, R.; Bonne, D.; Clark, C. G.; Lam, P. Y. S. Tetrahedron Lett. 2003, 44, 3863.
doi: 10.1016/S0040-4039(03)00739-1 pmid: 11277787 |
|
[60] |
Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330.
doi: 10.1038/nature14875 |
[61] |
Sang, R.; Korkis, S. E.; Su, W.; Ye, F.; Engl, P. S.; Berger, F.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 16161.
doi: 10.1002/anie.201908718 |
[62] |
Yang, L.; Hu, L; Lai, C.; Li, G.; Zhang, W.; Cao, R.; Liu, F.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem., Int. Ed. 2020, 59, 12714.
doi: 10.1002/anie.202003359 |
[63] |
Sun, R.; Qin, Y.; Ruccolo, S.; Schnedermann, C.; Costentin, C.; Nocera, D. G. J. Am. Chem. Soc. 2019, 141, 89.
doi: 10.1021/jacs.8b11262 |
[64] |
Zhou, Q.; Lu, F.; Liu, D; Lu, L; Xiao, W. Org. Chem. Front., 2018, 5, 3098.
doi: 10.1039/C8QO00805A |
[65] |
Yang, L.; Huang, Z.; Li, G.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem., Int. Ed. 2018, 57, 1968.
doi: 10.1002/anie.201710698 |
[66] |
(a) Khedkar, M. V.; Sasaki, T.; Bhanage, B. M. ACS Catal. 2013, 3, 287.
doi: 10.1021/cs300719r |
(b) Cheng, X.; Li, Y.; Su, Y. M.; Yin, F.; Wang, J.; Sheng, J.; Vora, H. U.; Wang, X.; Yu, J. J. Am. Chem. Soc. 2013, 135, 1236.
doi: 10.1021/ja311259x |
|
(c) Rosa, J. N.; Reddy, R. S.; Candeias, N. R.; Cal, P. M. S. D.; Gois, P. M. P. Org. Lett. 2010, 12, 2686.
doi: 10.1021/ol100302e |
|
[67] |
(a) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.
doi: 10.1039/C7CS00182G pmid: 18839946 |
(b) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422.
doi: 10.1021/ja806244b pmid: 18839946 |
|
(c) Li, B.; Li, Y.; Lu, X; Liu, J.; Guan, B.; Shi, Z. Angew. Chem., Int. Ed. 2008, 47, 10124.
doi: 10.1002/anie.200803814 pmid: 18839946 |
|
(d) Shimasaki, T.; Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49, 2929.
doi: 10.1002/anie.200907287 pmid: 18839946 |
|
(e) Takise, R.; Itami, K.; Yamaguchi, J. Org. Lett. 2016, 18, 4428.
doi: 10.1021/acs.orglett.6b02265 pmid: 18839946 |
|
[68] |
Luo, F.; Pan, C.; Qian, P.; Cheng, J. Synthesis 2010, 2005.
|
[69] |
(a) Zhang, L.; Zhang, G.; Zhang, M.; Cheng, J. J. Org. Chem. 2010, 75, 7472.
doi: 10.1021/jo101558s |
(b) Dai, J. J.; Liu, J. H.; Luo, D. F.; Liu, L. Chem. Commun. 2011, 47, 677.
doi: 10.1039/C0CC04104A |
|
(c) Ruso, J. S.; Rajendiran, N.; Kumaran, R. S. Tetrahedron Lett. 2014, 55, 2345.
doi: 10.1016/j.tetlet.2014.02.079 |
|
[70] |
(a) Petersen, T. B.; Khan, R.; Olofsson, B. Org. Lett. 2011, 13, 3462.
doi: 10.1021/ol2012082 pmid: 21615149 |
(b) Xie, H.; Yang, S.; Zhang, C.; Ding, M.; Liu, M.; Guo, J.; Zhang, F. J. Org. Chem. 2017, 82, 5250.
doi: 10.1021/acs.joc.7b00513 pmid: 21615149 |
|
(c) Dohi, T.; Koseki, D.; Sumida, K.; Okada, K.; Mizuno, S.; Kato, A. Adv. Synth. Catal. 2017, 359, 3503.
doi: 10.1002/adsc.201700843 pmid: 21615149 |
|
(d) Bhattarai, B.; Tay, J. H.; Nagorn, P. Chem. Commun. 2015, 51, 5398.
doi: 10.1039/C4CC08604J pmid: 21615149 |
|
[71] |
Kreye, O.; Meier, M. A. R. RSC Adv. 2015, 5, 53155.
doi: 10.1039/C5RA10206E |
[72] |
Welin, E. R.; Le, C.; Arias-Rotondo, D. M.; McCusker, J. K.; Mac Millan, D. W. C. Science 2017, 355, 380.
doi: 10.1126/science.aal2490 pmid: 28126814 |
[73] |
Lu, J.; Pattengale, B.; Liu, Q.; Yang, S.; Shi, W.; Li, S.; Huang, J.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 13719.
doi: 10.1021/jacs.8b07271 |
[74] |
Pieber, B.; Malik, J. A.; Cavedon, C.; Gisbertz, S.; Savateev, A.; Cruz, D.; Heil, T.; Zhang, G.; Seeberger, P. H. Angew. Chem., Int. Ed. 2019, 58, 9575.
doi: 10.1002/anie.201902785 |
[75] |
Zhu, D.; Li, H.; Xu, Z.; Li, H.; Young, D. J.; Lang, J. Org. Chem. Front. 2019, 6, 2353.
doi: 10.1039/C9QO00536F |
[76] |
Theil, F. Angew. Chem. Int. Ed. 1999, 38, 2345.
doi: 10.1002/(SICI)1521-3773(19990816)38:16<2345::AID-ANIE2345>3.0.CO;2-5 |
[77] |
Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046.
doi: 10.1002/(SICI)1521-3773(19980817)37:15【-逻*辑*与-】lt;2046::AID-ANIE2046【-逻*辑*与-】gt;3.0.CO;2-L pmid: 29711045 |
[78] |
Muci, A. R., Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131.
|
[79] |
Hartwig, J. F. Nature, 2008, 455, 314.
doi: 10.1038/nature07369 |
[80] |
Enthaler, S. Chem. Soc. Rev. 2011, 40, 4912.
doi: 10.1039/c1cs15085e pmid: 21643619 |
[81] |
Tan, Y.; Muñoz, M. J. M.; Fu, G. C.; Peters, J. C. Chem. Sci. 2014, 5, 2831.
doi: 10.1039/C4SC00368C |
[82] |
Liu, L.; Nevado, C. Organometallics 2021, 40, 2188.
doi: 10.1021/acs.organomet.1c00018 |
[83] |
Zhu, D.; Jiang, S.; Wu, Q. Wang, H.; Li, H.; Li, H.-X. Org. Lett. 2021, 23, 8327.
doi: 10.1021/acs.orglett.1c03066 |
[1] | Wenwen Chen, Qin Zhang, Songyue Zhang, Fangfang Huang, Xinyin Zhang, Jianfeng Jia. Visible Light Promoted Coupling Reaction of Alkynyl Iodide and Sodium Sulphinate without Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 584-592. |
[2] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[3] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[4] | Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17. |
[5] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[6] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[7] | Wei Xu, Hongbin Zhai, Bin Cheng, Taimin Wang. Visible Light-Induced Pd-Catalyzed Heck Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3035-3054. |
[8] | Zujia Chen, Shiwei Yu, Yongjun Zhou, Huanqing Li, Qiwen Qiu, Miaoxin Li, Zhaoyang Wang. Application of BF3•OEt2 in Organic Synthesis as a Catalyst or Synthon [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3107-3118. |
[9] | Xiaoyang Gao, Ruirui Zhai, Xun Chen, Shuojin Wang. Recent Progress in C—H Bond Activation Reaction with Vinylene Carbonate [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3119-3134. |
[10] | Wenfang Wang. Recent Progress in Transition-Metal-Catalyzed Asymmetric C—H Borylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3146-3166. |
[11] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[12] | Jiaxia Pu, Xiaoying Jia, Lirong Han, Qinghan Li. Research Progress of Visible Light Promoted C—N Bond Fracture to Construct C—C Bond [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2591-2613. |
[13] | Yingjie Liu, Gangqing Shi, Ge Chou, Xin Zhang, Dongxue Song, Ning Chen, Miao Yu, Ying Xu. Progress of α-Position Functionalization of Ethers under Photo/Electrocatalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2664-2681. |
[14] | Lingna Wang, Xiaoqing Liu, Gang Lin, Hongying Jin, Minjun Jiao, Xuefen Liu, Shuping Luo. Photocatalytic Activation of C(sp3)—H Bonds to Form C—S Bonds Catalyzed by (Oxybis(4,1-phenylene))bis(phenylmethanone) [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2848-2854. |
[15] | Yu Zhao, Kai Zhang, Yubin Bai, Yantu Zhang, Shihui Shi. A Metal-Free Photocatalytic Hydrosilylation of Alkenes Using Bromide Salt as a Hydrogen Atom Transfer Reagent [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2837-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||